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Decision Augmentation Theory (DAn holds that humans integrate information obtained by anoma­

lous cognition into the usual decision process. The result is that, to a statistical degree, such decisions 

are biased toward volitional outcomes. We introduce DAT and define the domain for which the model 

is applicable. In anomalous mental phenomena research, DAT is applicahle to the understanding of 

effects that are within a few sigma of chance. We contrast the experimental consequences of DATwith 

those of models that treat anomalous perturbation as a causal force. We derive mathematical expres­

sions for DATand causal models for two distributions, normal and binomial. DATis testable both retro­

spectively and prospectively, and we provide statistical power curves to assist in the experimental design 

of such tests. We show that the experimental consequences of DAT are different from those of causal 

models except for one degenerate case. 

Approved For Release 2000/08/08 : CIA-RDP96-00789R003200180001-7 1 



The Black Vault
The Black Vault is the largest online Freedom of Information Act (FOIA)
document clearinghouse in the world.  The research efforts here are
responsible for the declassification of hundreds of thousands of pages

released by the U.S. Government & Military.

Discover the Truth at: http://www.theblackvault.com

This document is made available through the declassification efforts 
and research of John Greenewald, Jr., creator of: 

http://www.theblackvault.com


Approved For Release 2000/08/08 : CIA-RDP96-00789R003200180001_7. 
Decision Augmentation Theory: Toward a M6C1erof A"MP 'it'9. 22 April 1994 

Introduction 
We do not have positive definitions of the effects that genera1Jy fall under the heading of anomalous 

mental phenomena (AMP).' In the crassest of terms, AMP is what happens when nothing else should, at 

least as nature is currently understood. In the domain of information acquisition, or anomalous cogni­

tion (Ae), it is relatively straightforward to design an experimental protocol (Honorton et aI., 1990, 

Hyman and Honorton, 1986) to assure that no known sensory leakage of information can occur. In the 

domain of causation, or anomalous perturbation (AP), however, it is very difficult, if not impossible 

(May, Humphrey, and Hubbard, 1980 and Hubbard, Bentley, Pasturel, and Issacs, 1987); thus, making 

the interpretation of results equally difficult. 

We can divideAP into two categories based on the magnitude of the putative effect. Macro-AP include 

phenomena that generally do not require sophisticated statistical analysis to tease out weak effects 

from the data. Examples include inelastic deformations in strain gauge experiments, the obvious bend­

ing of metal samples, and a host of possible "field phenomena" such as telekinesis, poltergeist, tele­

portation, and materialization. Conversely, micro-AI' covers experimental data from noisy diodes, ra­

dioactive decay and other random sources. These data show small differences from chance expectation 

and require statistical analysis. 

One of the consequences of the negative definitions of AMP is that experimenters must assure that the 

observables are not due to "known" effects. Traditionally, two techniques have been employed to guard 

against such interactions: 

(1) Complete physical isolation of the AP-target system. 

(2) Counterbalanced control and effort periods. 

Isolating physical systems from potential "environmental" effects is difficult, even for engineering spe­

cialists. It becomes increasingly problematical the more sensitive the Macro-AI' device. For example 

Hubbard, Bentley, Pasturel, and Issacs (1987) monitored a large number of sensors of environmental 

variables that could mimicAP effects in an extremely isolated piezoelectric strain gauge. Among these 

were three-axis accelerometers, calibrated microphones, and electromagnetic and nuclear radiation 

monitors. In addition, the sensors were mounted in a government-approved enclosure to assure no 

leakage (in or out) of electromagnetic radiation above a given frequency, and the enclosure itself was 

levitated on an air suspension table. Finally, the entire setup was locked in a controlled access room 

which was monitored by motion detectors. The system was so sensitive, for example, that it was possible 

to identify the source of a perturbation of the strain gauge that was due to innocent, gentle knocking on 

the door of the closed room. The financial and engineering resources to isolate such systems rapidly 

become prohibitive. 

The second method, which is commonly in lise, is to isolate the target system within the constraints of 

the available resources, and then construct protocols that include control and effort periods. Thus, we 

trade complete isolation for a statistical analysis of the difference between control and effort periods. 

The assumption implicit in this approach is that environmental influences of the device will be random 

* The Cognitive Sciences Laboratory has adopted the term anomalous mentalphenomena instead of the more widely knownpsi. 
Likewise, we use the terms anomalous cognition and anomalous perturhation for ESP and PK, respectively. We have done so 
because we believe that these terms are more naturally descriptive of the ohservahles and are neutral with regard to mecha­
nisms. These new terms will he used throughout this paper. 
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and uniformly distributed in both the control and effort conditions, while AP will tend to occur in the 

effort periods. Our arguments in favor of an anomaly, then, are based on statistical inference and we 

must consider, in detail, the conseq uences of such analyses, one of which implies a generalized model 

for AMP. 

Background 
As the evidence for AMP becomes more widely accepted (Bem and Honorton, 1994, Utts, 1991, Radin 

and Nelson, 1989) it is imperative to determine the underlying mechanisms of the phenomena. Clearly, 

we are not the first to begin thinking of potential models. In the process of amassing incontrovertible 

evidence of an anomaly, many theoretical approaches have been examined; in this section we outline a 

few of them. It is beyond the scope of this paper, however, to provide an exhaustive review of the 

theoretical models of AMP; a good reference to an up-to-date and detailed presentation is Stokes 

(1987). 

Brief Review of Models 

Two fundamentally different types of models have been developed: those that attempt to order and 

structure the raw observations in AMP experiments (i.e., phenomenological), and those that attempt to 

explainAMP in terms of modifications to existing physical theories (i.e., fundamental). In the history of 

the physical sciences, phenomenological models, such as the Snell's law of refraction or Ampere's law 

for the magnetic field due to a current, have nearly always preceded fundamental models of the phe­

nomena, such as quantum electrodynamics and Maxwell's theory. In producing useful models of AMP it 

may well be advantageous to start with phenomenological models, of which DAT is an example. 

Psychologists have contributed interesting phenomenological approaches. Stanford (1974a and 1974b) 

proposed PSI-mediated Instrumental Response (PMIR) as a descriptive model. PMIR states that an 

organism uses AMP to optimize its environment. For example, in one of Stanford's classic experiments 

(Stanford, Zenhausern, Taylor, and Dwyer 1975) subjects were offered a covert opportunity to stop a 

boring task prematurely if they exhibited unconscious AP by perturbing a hidden random number gen­

erator. Overall, the experiment was significant in the unconscious tasks; it was as if the participants 

were unconsciously scanning the extended environment for any way to provide a more optimal situation 

than participating in a boring psychological task! 

As an example of a fundamental model, Walker (1984) proposed a literal interpretation of quantum 

mechanics in that since superposition of eigenstates holds, even for macrosystems, AMP might be due 

to macroscopic examples of quantum phenomena. These concepts spawned a class of theories, the so­

called observation theories, that were based either upon quantum formalism conceptually or directly 

(Stokes, 1987). Jahn and Dunne (1986) have offered a "quantum metaphor" which illustrates many 

parallels between AMP and known quantum effects. Unfortunately, these models either have free pa­

rameters with unknown values, or are merely hand waving metaphors and therefore have not led to test­

able predictions. Some of these models propose questionable extensions to existing theories. For ex­

ample, even though Walker's interpretation of quantum mechanical formalism might suggest wave-like 

properties of macrosystems, the physics data to date not only show no indication of such phenomena at 

room temperature but provide considerable evidence to suggest that macrosystems lose their quantum 
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coherence above 0.5 Kelvins (Washburn and Webb, 1986) and no longer exhibit quantum wave-like be­

havior. 

This is not to say that a comprehensive model of AMP will not eventual1y require quantum mechanics as 

part of its explanation, but it is currently premature to consider such models as more than interesting 

speculation. The burden of proof is on the theorist to show why systems, which are normally considered 

classical (e.g., a human brain), are, indeed, quantum mechanical. That is, what are the experimental 

consequences of a quantum mechanical system over a classical one? 

Our Decision Augmentation Theory is phenomenological and is a logical and formal extension of Stan­

ford's elegant PMIR model. In the same manner as early models of the behavior of gases, acoustics, or 

optics, it tries to subsume a large range of experimental measurements into a coherent lawful scheme. 

Hopefully this process will lead the way to the uncovering of deeper mechanisms. In fact DAT leads to 

the idea that there may be only one underlying mechanism of all AMP effects, namely a transfer of in­

formation between events separated by negative time intervals. 

Historical Evolution of Decision Augmentation 

May, Humphrey, and Hubbard (1980) conducted a careful random number generator (RNG) experi­

ment. What makes this experiment unique is the extreme engineering and methodological care that 

was taken in order to isolate any potentially known physical interactions with the source of randomness. 

It is beyond the scope of this paper to describe this experiment completely; however, those specific de­

tails which led to the idea of Decision Augmentation are important for the sake of historical complete­

ness. 

May, Humphrey, and Hubbard were satisfied in that RNG study, that they had observed a genuine sta­

tistical anomaly. In addition, because of an accurate mathematical model of the random device and the 

engineering details of the experiment, they were equally satisfied that the deviations were not due to 

any known physical interactions. They concluded, in their report, that some form of AMP-mediated 

data selection had occurred. They named it then Psychoenergetic Data Selection. 

Following a suggestion by Dr. David R. Saunders of MARS Measurement and Associates, we noticed 

in 1986 that the effect size in binary RNG studies varied on the average as the square root of the number 

of bits in the sequence. This observation led to the development of the Intuitive Data Sorting model that 

appeared to describe the RNG data to that date (May, Radin, Hubbard, Humphrey, and Utts, 1985). 

The remainder of this paper describes the next step in the evolution process. We now call the model 

Decision Augmentation Theory (DAT). 

Decision Augmentation Theory-A General Description 
Since the case for AC-mediated information transfer is now well established, it would be exceptional if 

we did not integrate this form of information gathering into the decision process. For example, we rou­

tinely use real-time data gathering and historical information to assist in the decision process. Perhaps, 

what is called intuition may playa important role. Why, then, should we not includeAC information? 

DATholds thatAC information is included along with the usual inputs that result in a final human deci­

sion that favours a "desired" outcome. In statistical parlance, OAT says that a slight, systematic bias is 

introduced into the decision process by AC. 
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This philosophical concept has the advantage of being quite general. We know of no experiment that is 

devoid of at least one human decision; thus, DAT might be the underlying basis for AMP. To illustrate 

the point, we describe how the "cosmos" determines the outcome of a well-designed, hypothetical ex­

periment. To determine the sequencing of an RNG experiment, suppose that the entry point into a 

table of random numbers will be chosen by the square root of the barometric pressure as stated in the 

weather report that will be published seven days hence in the New York Times. Since humans are notori­

ously bad at predicting or controlling the weather, this entry point might seem independent of a human 

decision; but why did we "chose" seven days in advance? Why not six or eight? Why the New York Times 

and not the London Times? DATwould suggest that the selection of seven days, the New York Times, the 

barometric pressure, and square root function were optimal choices, either individually or collectively, 

and that other decisions would not lead to as significant an outcome. 

Other non-technical decisions may also be biased by AC in accordance with DAT. When should we 

schedule a Ganzfeld session; who should be the experimenter in a series; how should we determine a 

specific order in a tri-polar protocol? 

It is important to understand the domain in which a model is applicable. For example, Newton's laws 

are sufficient to describe the dynamics of mechanical objects in the domain where the velocities are very 

much smaller than the speed of light, and where the quantum wavelength of the object is very small 

compared to the physical extent of the object. If these conditions are violated, then different models 

must be invoked (e.g., relativity and quantum mechanics, respectively). 

The domain in which DAT is applicable is when experimental outcomes are in a statistical regime (i.e., a 

few standard deviations from chance). In other words, does the measured effect occur under the nul1 

hypothesis? This is not a sharp-edged requirement and DA T becomes less apropos the more a single 

measurement deviates from mean-chance-expectation (MCE). We would not invoke DAr, for exam­

ple, as an explanation of levitation if one found the authors hovering near the ceiling! 

All this may be interesting philosophy, but DAT can be formulated mathematically and subjected to rig­

orous examination. 

Development of a Formal Model 
While DAT may have implications for AMP in general, we develop the model in the framework of un­

derstanding experimental results. In particular, we consider AP vs AC in the form of DAT in those ex­

periments whose outcomes are in the few-sigma, statistical regime. 

We define four possible mechanisms for the results in such experiments: 

(1) Mean Chance Expectation. The results are at chance. That is, the deviation of the dependent vari­
able meets accepted criteria for MC£. In statistical parlance, we have measurements from an un­
perturbed parent distribution with unhiased sampling. 

(2) Anomalous Perturbation. Nature is modified by some anomalous interaction. That is, we expect a 
causal interaction of a "force" type. In statistical parlance, we have measurements from aperturbed 
parent distribution with unhiased sampling. 

(3) Decision Augmentation. Nature is unchanged but the measurements are biased. That is, Ae in­
formation has "distorted" the sampling. In statistical parlance, we have measurements from an 
unperturbed parent distribution with hiased sampling. 
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(4) Combination. Nature is modified and the measurements are biased. That is, bothAP andAC are 
present. In statistical parlance, we have conducted biased sampling from a perturbed parent dis­
tribution. 

General Considerations 

Since the formal discussion of DATis statistical, we will describe the overall context for the development 

of the model from that perspective. Consider a random variable, X, that can take on continuous values 

(e.g., the normal distribution) or discrete values (e.g., the binomial distribution). Examples of X might 

be the hit rate in an RNG experiment, the swimming velocity of cells, or the mutation rate of bacteria. 

Let Ybe the average computed over n values of X, where n is the number of items that are collectively 

subjected to anAMP influence as the result of a single decision-one trial. Often this may be equivalent 

to a single effort period, but it also may include repeated efforts. The key point is that, regardless of the 

effort style, the average value of the dependent variable is computed over the n values resulting from 

one decision point. In the examples above, n is the sequence length of a single run in an RNG experi­

ment, the number of swimming cells measured during the trial, or the number of bacteria-containing 

test tubes present during the trial. 

Assumptions for OAT 

We assume that the parent distribution of a physical system remains unperturbed; however, the mea­

surements of the physical system are systematically biased by some AC-mediated informational pro­

cess. 

Since the deviations seen in experiments in the statistical regime tend to be small in magnitude, it is safe 

to assume that the measurement biases might also be small; therefore, we assume small shifts of the 

mean and variance of the sampling distribution. Figure 1 shows the distributions for biased and un­

biased measurements. 

iJD = 0 I-lz 
Normalized Sampling Variable Z = (;.t - flo).rn 

Figure 1. Sampling Distribution Under DAT. 

The biased sampling distribution shown in Figure 1 is assumed to be normally distributed as: 
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where the notation means that Z is distributed as a normal distribution with a mean of I1z and a standard 

deviation of Oz. 

Assumptions for an AP Model 

For comparison sake, we develop a model for AP interactions. With a few exceptions reported in the 

poltergeist literature,AP appears to be a relatively "small" effect in laboratory experiments. That is, we 

do not readily observe anomalous and obvious mental interactions with the environment. Thus, we be­

gin with the assumption that a putative AP force would give rise to a perturbational interaction. What 

we mean is that given an ensemble of entities (e.g., binary hits, cells), a force acts, on the average, equal­

lyon each member of the ensemble. We call this type of interaction perturbationalAP (PAP). 

Figure 2 shows a schematic representation of probability density functions for a parent distribution un­

der the PAP assumption and an unperturbed parent distribution. In the PAP model, the perturbation 

induces a change in the mean of the parent distribution but does not effects its variance. We parameter­

ize the mean shift in terms of a multiplier of the initial standard deviation. Thus, we define an AP-effect 

size as: 

where III and 110 are the means of the perturbed and unperturbed distributions, respectively, and where 

00 is the standard deviation of the unperturbed distribution. 

110 111 :;: 110 + c A10 0 

Dependent Variable 

Figure 2. Parent Distribution for PerturbationalAP. 

For the moment, we consider cAP as a parameter which, in principle, could be a function of a variety of 

variables (e.g., psychological, physical, environmental, methodological). As we develop DAT for specif­

ic distributions and experiments, we will discuss this functionality of cAP, 

Calculation of E(Z2) 

We compute the expected value and variance of Z2 under MCE, PAp, and DATfor the normal and bino­

mial distributions. The details of the calculations can be found in the Appendix; however, we summa­

rize the results in this section. Table 1 shows the results assuming that the parent distribution is normal. 
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Table 1. 

Normal Parent Distribution 

Mechanism 
Quantity 

MCE PAP DAT 

£(Z2) 1 1 + £~pn ,u; + 0; 

Var(Z2) 2 2(1 + 2£~pn) 2(0: + 2,u;0;) 

Thble 2 shows the results assuming that the parent distribution is binomial. In this ca1culation,po is the 

binomial event probability and 00 = vpo(l-po). 

Table 2. 

Binomial Parent Distribution 

Mechanism 
Quantity 

MCE PAP DAT 

£(Z2) 
£ ,u; + 0; 1 1 + £~p (n - 1) + ~: (1 - 2po) 

Var(Z2) 2 + ~(1 noo 
- 60~) 2(1 + 2dl'n)' 2(0: + 2,u;0;) 

... The variance shown assumes Po = 0.5 and n ~ 1. See the Appendix for other cases. 

We wish to emphasize at this point that in the development of the mathematical model, the parameter 

tAP for PAp, and the parameters,Llz, and Oz in DAT may all possibly depend upon n; however, for the 

moment, we assume that they are all n-independent. We shall discuss the consequences of this assump­

tion below. 

Figure 3 displays these theoretical calculations for the three mechanisms graphically. 

n 

Figure 3. Predictions of MCE, PAp, and DAT. 

large 

+ 
PAP 

sJall 

DAT 

MCE 
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Within the constraints mentioned above, this formulation predicts grossly different outcomes for these 

models and, therefore, is ultimately capable of separating them, even for very smaII perturbations, 

Retrospective Tests 
It is possible to apply DAT retrospectively to any body of data that meet certain constraints. It is critical 

to keep in mind the meaning of n-the number of measures of the dependent variable over which to 

compute an average during a single trial foIIowing a single decisioll In terms of their predictions for 

experimental results, the crucial distinction between DAT and the PAP model is the dependence of the 

results upon n; therefore, experiments which are used to test these theories must be those in which ex­

periment participants are blind to n. In a follow-on to this theory-definition paper, we will retrospec­

tively apply DAT to as many data sets as possible, and examine the consequences of any violations of 

these criteria. 

Aside from these considerations, the application of DAT is straight forward. Having identified the unit 

of analysis and n, simply create a scatter diagram of points (Z2, n) and compute a least square fit to a 

straight line. Tables 1 and 2 show that for the PAP model, the square of the AP-effect size is the slope of 

the resulting fit. A student's t-test may be used to test the hypothesis that the AP-effect size is zero, and 

thus test for the validity of the PAP modeL If the slope is zero, these same tables show that the intercept 

maybe interpreted as anAC strength parameter for DAT. The follow-on paper will describe these tech­

niques in detail. 

Prospective Tests 
A prospective test of DATwill not only test the AMP hypothesis against mean chance expectation, but 

wiII also test for a PAP contribution. In stich tests, n should certainly be a double-blind parameter and 

take on at least two values. If you wanted to check the prediction of a linear functional relationship 

between n and the E(Z2) that is suggested by PAP model, the more values of n the better. It is not pos­

sible to separate the PAP model from DAT at a single value of n. 

In any prospective test, it is helpful to know the number of runs, N, that are necessary to determine with 

95% confidence, which of the two models best fits the data. Figure 4 displays the problem graphically. 

Figure 4. Model Predictions for the Power Calculation. 
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Under PAp, 95% of the values of 22 will be greater than the point indicated in Figure 4. Even if the 

measured value ofZ2 is at this point, we would like the lower limit of the 95% confidence interval for this 

value to be greater than the predicted value under the DAT model. Or: 

_2 0AP (600AT' ( 2) ZAP - 1.645 IN - 1.9 IN 2 EAC Z . 

Solving for N in the equality, we find: 
2 

[ 
3.605 0AP ] 

N = EAP(Z2) - EAC(Z2) . 
(1) 

Since 0AP > 0Ae, this value ofN will always be the larger estimate than that derived from beginning with 

DAT and calculating the confidence intervals in the other direction. 

Suppose, from an earlier experiment, one can estimate a single-trial effect size for a specific value of n, 

say n1. To detennine whether the PAP model or DAT is the proper description of the mechanism, we 

must conduct another study at an additional value of n, say n2. We use Equation 1 to compute how many 

runs we must conduct at n2 to assure a separation of mechanism with 95% confidence, and we use the 

variances shown in Tables 1 and 2 to compute 0Ap. Figure 5 shows the numher of runs for an RNG-like 

experiment as a function of effect size for three values of n2. 

We chose n1 = 100 bits because it is typical of the numhers found in the RNG database and the values of 

n2 shown are within easy reach of today's computer-hased RNG devices. For example, assuming 0z = 
1.0 and assuming an effect size of 0.004, one we derived from a puhlication of PEAR data (Jahn, 1982), 

then atn1 = 100,,Llz = 0.004 x yl100 = 0.04 and EAdZ2) = 1.0016. Supposen2 = 104• ThenEAP(Z2) = 
1.160 and 0AP = 1.625. Using Equation 1, we find N = 1368 runs, which can be approximately obtained 

from Figure 5. That is in this example, 1368 runs are needed to resolve thePAP model from DATat n2 = 
104 at the 95% confidence level. Since these runs are easily ohtained in most RNG experiments, an 

ideal prospective test of DAr, which is hased on these calculations, would he to conduct 1500 runs ran­

domly counterbalanced between n = 102 and n = 104 bits/trial. If the effect size at n = 102 is near 0.004, 

than we would resolve theAP vsAC question with 95% confidence. 

AC Effect Size at nJ = 100 bits 

Figure 5. Runs Required for RNG Effect Sizes 
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Figure 6 shows similar relationships for effect sizes that are more typical of bioi ogica lAP as reported in 

the Former Soviet Union (May and Vilenskaya, 1994). 

Similarly, for biological oriented AP experiments, we chose nt = 2 because use two simultaneous AP 

targets is easily accomplished. If we assume an effect size of 0.3 and Oz = 1.0, at n2 = 10 we compute 

EAdZ2) = 1.180, EAP(Z2) = 1.900, 0AI' = 2.366 and N = 140, which can be approximately obtained 

from Figure 6. 

We have included n2 = 100 in Figure 6, because this is within reach in cellular experiments although it is 

probably not practical for most biological AP experiments. 

AC Effect Size at n} = 2 units 

Figure 6. Runs Required for Biological AP Effect Sizes 

We chose n1 = 2 units for convenience. For example in a plant study, the physiological responses can 

easily be averaged over two plants and n2 = 10 is within reason for a second data point. A unit could be a 

test tube containing cells or bacteria; the collection of all ten test tubes would simultaneously have to be 

the target of the AP effort to meet the constraints of a valid test. 

The prospective tests we have described so far are conditiomtl; that is, given an effect size, we provide a 

protocol to test if the mechanism for AMP is PAP or DAr. An unconditional test does not assume any 

effect size; all that is necessary is to collect data at a large number of different values of n, and fit a 

straight line through the resulting Z2s. The mechanism is PAP if the slope is non-zero and maybe DATif 

the slope is zero. 

Discussion 
We now address the possible n-dependence of the model parameters. A degenerate case arises if SAP is 

proportional to Vn; if that were the case, we could not distinguish between the PAP model and DATby 

means of tests on the n dependence of results. If it turns out that in the analysis of the data from a vari­

ety of experiments, participants, and laboratories, the slope of a Z2 vs n linear least-squares fit is zero, 

then either SAP = 0.0 or SAP is exactly proportional to Vn depending upon the precision of the fit (Le., 

errors on the zero slope). An attempt might be made to rescue the PAP hypothesis by explaining the Vn 
dependence of Z2 in the degenerate case as a fatigue or other time dependence effects. That is it might 
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be hypothesized that human participants might hecomeAP-tired as a function of n; however, it seems 

improbable that a human-based phenomena would be so widely distributed and constant and give ex­

actly the ."In dependency in differing protocols needed to imitate DAT. We prefer to resolve.the degen­

eracy by wielding Occam's razor: if the only type of AP which fits the data is indistinguishable fromAC, 

and given that we have ample demonstrations of A C by independent means in the laboratory, then we 

do not need to invent an additional phenomenon calledAP. Except for this degeneracy, a zero slope for 

the fit allows us to reject all PAP models, regardless of their n-dependencies. 

DATis not limited to experiments that capture data from a dynamic system. DATmay also be the mech­

anism in protocols which utilize quasi-static target systems. In a quasi-static target system, a random 

process occurs only when a run is initiated; a mechanical dice thrower is an example. Yet, in a series of 

unattended runs of such a device there is always a statistical variation in the mean of the dependent 

variable that may be due to a variety of factors, such as Brownian motion, temperature, humidity, and 

possibly the quantum mechanical uncertainty principle (Walker, 1974). Thus, the results obtained will 

ultimately depend upon when the run is initiated. It is also possible that a second-order DAT mecha­

nism arises because of protocol selection; how and who determines the order in tri-polar protocols. In 

second order DAT there may be individuals, other than the formal subject, whose decisions effect the 

experimental outcome and are modified by Ae. 

Finally, we would like to close with a clear statement of what is meant by DAT: the decisions on which 

experimental outcomes depend are augmented by AC to capitalize upon the unperturbed statistical 

fluctuations of the target system. In our follow-on paper, we will examine retrospective applications to a 

variety of data sets. 
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Appendix 

Mathematical Derivations for the Decision Augmentation Theory 
In this appendix we develop the formalism for the Decision Augmentation Theory (DA 7). We consider 

cases for the mean-chance-expectation (MCE), anomalous perturbation (AP), and anomalous cogni­

tion (AC) under two assumptions-normality and Bernoulli sampling. For each of these three models, 

we compute the expected values of Z and Z2, and the variance of Z2* 

Mean Chance Expectation (MG£) 

Normal Distribution 

We begin by considering a random variable, X, whose probability density function is normal, (Le., N(IlO, 

ao2)t). After many unbiased measures from this distribution, it is possible to obtain reasonable ap­

proximations to flO and 00 2 in the lIsual way. Suppose n unbiased measures are used to compute a new 

variable, Y, given by: 

Yk = ;} ! Xj,k' 
j=\ 

Then Yis distributed as N(p{), On 2), where on2 = 002/n. If Z is defined as 

Z ::::; Yk - flo 

On ' 

then Z is distributed as N(O, 1) and E(Z) is given by: 

'" 

E~C/lZ) = & f ze 0.sz2dz = O. 

-'" 

Since Var(Z) = 1 = E(Z2) - E2(Z), then 

'" 

EN (Z2)::::; _1_ J Z2e - 0.5z2 dz = 1. 
MCE .(2;; 

.- "" 

* We wish to thank Zoltan Vassy for originally suggesting the;(2 formalism. 
t Throughout this appendix, this notation means: 

[X-l'l2 
N(" 2) __ l_ -0.5 (] 

V'" a - r:;--e . 
a -/2n 
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00 

EN (Z4);::;: _1_ f Z4e -o.sz2dz ;::;: 3. 
MeR ,[2;; 

So 

(3) 

Bernoulli Sampling 

Let the probability of observing a one under Bernoulli sampling be given by PO. After n samples, the 

discrete Z-score is given by: 

where 

and k is the number of observed ones ( () < k < n). The expected value of Z is given by: 

(4 ) 

where 

The first term in Equation 4 is the E(k) which, for the binomial distribution, is npo. Thus 

(5 ) 

The expected value of Z2 is given by: 

Eli (Z2);::;: Var(Z) + E2(Z) Mer; , 

(6) 

As in the normal case, the Var(Z2) = E(Z4) - E2(Z2) = E(Z4) - 1. But" 

• Johnson, N. L., and S. Kotz, Discrete Distributions, John Wiley & Sons, New York, p. 51, (1969). 
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= 3 + ~(1 - 606). 
noo 

So, 

Var~ciZ2) = 2 + n;2 (1 - 606) = 2 - ft' (Po = 0.5). 
o 

Anomalous Perturbation (AP) 

Normal Distribution 

(7) 

Under the perturbation assumption described in the text, we let the mean of the perturbed distribution 

be given by.uo+ capOO, where cap is an AP strength parameter, and in the general case may be a function 

ofn and time. The parent distribution for the random variable, X, becomes N(,uo + capOO, 00 2). As in the 

MCE case, the average of n independent values of X, is y",-, N(po + capOO, an 2). Let 

y :;;; /10 + capOo + Lly, 
where 

For a mean of n samples, the Z-score is given by 

_ y - 110 _ capoo + Lly _ c ~ 
Z--o-- a -capvn+.,. 

" " 
where ~ is distributed as N(O, 1) and is given by Lly / an. Then the expected vallle of Z is given by 

E~l'(Z) :;;; EA1,(cap J";; + ~) :;;; cap.ln + E(~) :;;; cap.ln. 

and the expected value of Z2 is given by 

since E(t:,) = 0 and E(r,2) = 1. 

(8) 

(9) 

In general, Z2 is distributed as a non-central X2 with"] degree of freedom and non-centrality parameter 

nEap 2, X 2(1, nEap 2). Thus, the variance of Z2is given by" 

( 10) 

Bernoulli Sampling 

As before, let the probability of observing a one under MCE be given by PO, and the discrete Z-score be 

given by: 

• Johnson, N. L., and S. Kotz, Continuous Univariate [)islrihulions-2, John Wiley & Sons, New York, p. 134, (1970). 
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Z = k - npo 
Gam' 

where k is the number of observed ones ( () < Ie <n). Under the perturbation assumption, we let the 

mean of the distribution of the single-bit probability be given by PI = PO + capOO, where fap is an AP 

strength parameter. The expected value of Z is given by: 

where 

The expected value of Z becomes 

( 11 ) 

Since Cap = E(Z)/Vn, so Cap is also the binomial effect size. The expected value of Z2 is given by: 

Expanding in terms of Pl = PO + capOO, 

IJ ( 2) _ 2 f.ap 
EAI' Z - 1 + f.ap(n - 1) + "00(1 - 2po)· ( 12) 

Ifpo = 0.5 (i.e., a binary case) and n» 1, then Equation 12 reduces to the E(Z2) in the normal case, 

Equation 9. 

We begin the calculation of Var(Z2) by using the equation for thejth moment of a binomial distribution 

mj = ~:j [(q + pel)"] 11=0' 

Since Var(Z2) = £(Z4) - E2(Z2), we must evaluate E(Z4). Or, 

Expanding n -200 -4(k - npo)4, using the appropriate moments, and subtracting E2(Z2) , yields 

( 13 ) 
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Where 

3 

C1 == 4dp(1 - E~p) + 4 ~~ (l - 2po), and 

Under the condition thatEap «1 (a frequent occurrence in the perturbation approximation for AP), we 

ignore any terms of higher order than Eap 2. Then the variance reduces to 

We notice that when {; == 0, the variance reduces to the MCE case for Bernoulli sampling. When n» 1, E 

«1, and PO == 0.5, the variance reduces to that derived under the normal distribution assumption. Or, 

( 14 ) 

Anomalous Cognition (AC) 

The primary assumption for AC is that the parent distribution remains unchanged, (Le., N(J1{), 00 2). It 

further assumes that because of a AC-mediated bias the sampling distribution is distorted leading to a 

Z-distribution as N(f.-l ac, oac2). In the most general case,llac and oac may be functions of n and time. Let l; 
be given by 

The expected value of Z is given by (by definition) 

E~c(Z) == !lac· 

The expected value of Z2 is given by definition as 

E~C(Z2) == f.-l~c + o~c· 
The Var(Z2) can be calculated by noticing that 

So the Jilr(Z2) is given by 
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As in the normal case, the primary assumption is that the parent distribution remains unchanged, and 

that because of a psi-mediated bias the sampling distribution is distorted leading to a discrete Z-dis­

tribution characterized by liac(rz) and oac 2(rz). Thus, by definition, the expected values of Z and Z2 are 

given by 

( 18 ) 

E~AZ2) = Ii~c + a;r.. 
For any value of n, estimates of these parameters are calculated from N data points as 

N 

(iac = ~ 2.>j' and 
j=l 

~2 N j ~2 

( 

N Z2 ) 

Oac = eN - 1) (;N -li ac ' • 

The Var(Z2) for the discrete case is identical to the continuolls case. Therefore 

( 19 ) 
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