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Decision Augmentation Theory (OAT) holds that humans integrate information obtained by anoma­

lous cognition into the usual decision process. The result is that, to a statistical degree, such decisions 

are biased toward volitional outcomes. We introduce our model and show that the domain over which it 

is applicable is within a few standard deviations from chance. We contrast the theory's experimental 

consequences with those of models that treat anomalous effects as due to a force. We derive mathemat­

ical expressions for OAT and for force-like models using two distributions, normal and binomial. OAT 

is testable both retrospectively and prospectively, and we provide statistical power curves to assist in the 

experimental design of such tests. We show that the experimental consequences of our theory are dif­

ferent from those of force-like models except for one special case. 
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Introduction 
We do not have positive definitions of the effects that generally fall under the heading of anomalous 

mental phenomena.· In the crassest of terms, anomalous mental phenomena are what happens when 

_ nothing else should, at least as nature is currently understood. In the domain of information acquisi­

tion, or anomalous cognition (AC), it is relatively straightforward to design an experimental protocol 

(Honorton et al., 1990, Hyman and Honorton, 1986) to assure that no known sensory leakage of in­

formation can occur. In the domain of macroscopic anomalous perturbation CAP), however, it is often 

very difficult. 

We can divide anomalous perturbation into two categories based on the magnitude of the putative ef­

fect. Macro-AP include phenomena that generally do not require sophisticated statistical analysis to 

tease out weak effects from the data. Examples include inelastic deformations in strain gauge experi­

ments, the obvious bending of metal samples, and a host of possible "field phenomena" such as teleki­

nesis, poltergeist, teleportation, and materialization. Conversely, micro-AP covers experimental data 

from noisy diodes, radioactive decay and other random sources. These data show small differences 

from chance expectation and require statistical analysis. 

One of the consequences of the negative definitions of anomalies is that experimenters must assure that 

the observables are not due to "known" effects. 'fraditionally, two techniques have been employed to 

guard against such interactions: 

(1) Complete physical isolation of the target system. 

(2) Counterbalanced control and effort periods. 

Isolating physical systems from potential "environmental" effects is difficult, even for engineering spe­

cialists. It becomes increasingly problematical the more sensitive the AP device. For example Hubbard, 

Bentley, Pasture I, and Issacs (1987) monitored a large number of sensors of environmental variables 

that could mimic perturbational effects in an extremely isolated piezoelectric strain gauge. Among 

these sensors were three-axis accelerometers, calibrated microphones, and electromagnetic and nu­

clear radiation monitors. In addition, the strain gauges were mounted in a government-approved en­

closure to assure no leakage (in or out) of electromagnetic radiation above a given frequency, and the 

enclosure itself was levitated on an air suspension table. Finally, the entire setup was locked in a con­

tro]]ed access room which was monitored by motion detectors. The system was so sensitive, for exam­

ple, that it was possible to identify the source of a perturbation of the strain gauge that was due to inno­

cent, gentle knocking on the door of the closed room. The financial and engineering resources to isolate 

such systems rapidly become prohibitive. 

The second method, which is commonly in use, is to isolate the target system within the constraints of 

the available resources, and then construct protocols that include control and effort periods. Thus, we 

trade complete isolation for a statistical analysis of the difference between the control and effort peri­

ods. The assumption implicit in this approach is that environmental influences of the target device will 

be random and uniformly distributed in both the control and effort conditions, while anomalous effects 

• The Cognitive Sciences LaboratOlY has adopted the term anomalous mentalphenomena instead of the more widely knownpsi. 
Likewise, we use the terms anomalous cognition and anomalous perturbation for ESP andPK, respectively. We have done so 
because we believe that these terms are more naturally descriptive of the observables and are neutral with regard to mecha­
nisms. These new terms will be used throughout this paper. 
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will tend to occur in the effort periods. Our arguments in favo_r of an anomaly, then, are based on statis­

tical inference and we must consider, in detail, the consequences of such analyses. 

Background 
As the evidence for anomalous mental phenomena becomes more widely accepted (Bern and Honor­

ton, 1994, Utts, 1991, Radin and Nelson, 1989) it is imperative to determine their underlying mecha­

nisms. Clearly, we are not the first to begin thinking of potential models. In the process of amassing 

incontrovertible evidence of an anomaly, many theoretical approaches have been examined; in this sec­

tion we outline a few of them. It is beyond the scope of this paper, however, to provide an exhaustive 

review of the theoretical models; a good reference to an up-to-date and detailed presentation is Stokes 

(1987). 

Brief Review of Models 

1\vo fundamentally different types of models of anomalous mental phenomena have been developed: 

those that attempt to order and structure the raw observations in experiments (i.e., phenomenological 

models), and those that attempt to explain tliese phenomena in terms of modifications to existing physi­

cal theories (i.e., fundamental models). In the history ofthe physical sciences, phenomenological mod­

els, such as the Snell's law of refraction or Ampere's law for the magnetic field due to a current, have 

nearly always preceded fundamental models, such as quantum electrodynamics and Maxwell's theory. 

In producing useful models of anomalies it may well be advantageous to start with phenomenological 

models, of which DAT is an example. 

Psychologists have contributed interesting phenomenological approaches. Stanford (1974a and 1974b) 

proposed PSI-Mediated Instrumental Response (PMIR). PMIR states that an organism uses anoma­

lous mental phenomena to optimize its environment. For example, in one of Stanford's classic experi­

ments (Stanford, Zenhausem, Thylor, and Dwyer 1975) subjects were offered a covert opportunity to 

stop a boring task prematurely if they exhibited unconscious anomalous perturbation by perturbing a 

hidden random number generator. Overall, the experiment was significant in the unconscious tasks; it 

was as if the participants were unconsciously scanning the extended environment for any way to provide 

a more optimal situation than participating in a boring psychological task! 

As an example of a fundamental model, Walker (1984) proposed a literal interpretation of quantum 

mechanics and posited that since superposition of eigenstates holds, even for macrosystems, anoma­

lous mental phenomena might be due to macroscopic examples of quantum effects. These ideas 

spawned a class of theories, the so-called observation theories, that were either based upon quantum 

formalism conceptually or directly (Stokes, 1987). Jahn and Dunne (1986) have offered a "quantum 

metaphor" which illustrates many parallels between these anomalies and known quantum effects. U n­

fortunately, these models either have free parameters with unknown values, or are merely hand waving 

metaphors. Some of these models propose questionable extensions to existing theories. For example, 

even though Walker's interpretation of quantum mechanical formalism might suggest wave-like prop­

erties of macrosystems, the physics data to date not only show no indication of such phenomena at room 

temperature but provide considerable evidence to suggest that macrosystems lose their quantum coher­

ence above 0.5 Kelvins (Washburn and Webb, 1986) and no longer exhibit quantum wave-like behavior. 

Approved For Release 2000/08/10 : ClA-RDP96-00791 R000200280002-5 3 



16 May 1995 

This is not to say that a comprehensive model of anomalou~ mental phenomena may not eventually 

require quantum mechanics as part of its explanation, but it is currently premature to consider such 

models as more than interesting speculation. The burden of proof is on the theorist to show why sys­

tems, which are normally considered classical (e.g., a human brain), are, indeed, quantum mechanical. 

- That is, what are the experimental consequences of a quantum mechanical system over a classical one? 

Our Decision Augmentation Theory is phenomenological and is a logical and formal extension of Stan­

ford's elegant PMIR model. In the same manner as early models of the behavior of gases, acoustics, or 

optics, DAT tries to subsume a large range of experimental measurements into a coherent lawful 

scheme. Hopefully this process will lead the way to the unCovering of deeper mechanisms. In fact DAT 

leads to the idea that there may be only one underlying mechanism of all anomalous mental phenome­

na, namely a transfer of information from future to past. 

Historical Evolution of Decision Augmentation 

May, Humphrey, and Hubbard (1980) conducted a careful random number generator (RNG) experi­

ment which was distinguished by the extreme engineering and methodological care that was taken to 

isolate any potentially known physical interactions with the source of randomness (D. Druckman and J. 
A. Swets, page 189, 1988). It is beyond the scope of this paper to describe this experiment completely; 

however, those specific details which led to the idea of Decision Augmentation are important for the 

sake of historical completeness. The authors were satisfied that they had observed a genuine statistical 

anomaly and additionally, because they had developed an accurate mathematical model of the random 

device, they were assured that the deviations were not due to any known physical interactions. They 

concluded, in their report, that some form of anomalous data selection had occurred and named it Psy­
choenergetic Data Selection. 

Following a suggestion by Dr. David R. Saunders of MARS Measurement and Associates, we noticed in 

1986 that the effect size in binary RNG studies varied on the average as one over the square root of the 

number of bits in the sequence. This observation led to the development of the Intuitive Data Sorting 
model that appeared to describe the RNG data to that date (May, Radin, Hubbard, Humphrey, and 

Utts, 1985). The remainder of this paper describes the next step in the evolution of the theory which is 

now named Decision Augmentation Theory. 

Decision Augmentation Theory-A General Description 
Since the case for AC-mediated information transfer is now well established (Bern and Honorton, 

1994) it would be exceptional ifwe did not integrate this form of information gathering into the decision 

process. For example,. we routinely use real-time data gathering and historical information to assist in 

the decision process. Why, then, should we not include AC in the decision process? DAT holds that AC 

information is included along with the usual inputs that result in a final human decision that favours a 

"desired" outcome. In statistical parlance, DAT says that a slight, systematic bias is introduced into the 

decision process by AC. 

This philosophical concept has the advantage of being quite general. Th illustrate the point, we describe 

how the "cosmos" determines the outcome of a well-designed, hypothetical experiment. Th determine 

the sequencing of conditions in an RNG experiment, suppose that the entry point into a table of ran­

dom numbers will be chosen by the square root of the barometric pressure as stated in the weather re-
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port that will be published seven days hence in the New }Vrk Til}'les. Since humans are notoriously bad at 

- predicting or controlling the weather, this entry point might seem independent of a human decision; but 

why did we "choose" seven days in advance? Why not six or eight? Why the New }Vrk Times and not the 

London Times? OAT would suggest that the selection of seven days, the New York Times, the barometric 

-- pressure, and square root function were better choices, either individually or collectively, and that other 

decisions would not have led to as significant an outcome. Other non-technical decisions may also be 

biased by AC in accordance with OAT. When should we schedule a Ganzfeld session; who should be the 

experimenter in a series; how should we determine a specific order in a tri-polar protocol? DAT ex­

plains anomalous ~ental phenomena as a process of judicious sampling from a world of events that are 

unperturbed. In contrast, force-like models, hold that some kind of mentally-mediated force perturbs 

the world. As we will show below, these two types of models lead to quite different predictions. 

It is important to understand the domain in which a model is applicable. For example, Newton's laws 

are sufficient to describe the dynamics of mechanical objects in the domain where the velocities are very 

much smaner than the speed of light, and where the quantum wavelength of the object is very small 

compared to the physical extent of the object. If these conditions are violated, then different models 

must be invoked (e.g., relativity and quantum mechanics, respectively). The domain in which OAT is 

applicable is when experimental outcomes are in a statistical regime (i.e., a few standard deviations 

from chance). In other words, could the measured effect occur under the null hypothesis? This is not a 

sharp-edged requirement but OAT becomes less apropos the more a single measurement deviates from 

mean-chance-expectation (MCE). We would not invoke DAT, for example, as an explanation of levita­

tion if one found the authors hovering near the ceiling! The source of the statistical variation is unre­

stricted and may be of classical or quantum origin, because a potential underlying mechanism for OAT 

is precognition. By this means, experiment participants become statistical opportunists. 

Development of a Formal Model 
While OAT may have implications for anomalous mental phenomena in general, we develop the model 

in the framework of understanding experimental results. In particular, we consider anomalous per­

turbation versus anomalous cognition in the form of decision augmentation in those experiments whose 

outcomes are in the few-sigma, statistical regime. 

We define four possible mechanisms for the results in such experiments: 

(1) Mean Chance Expectation. The results are at chance. That is, the deviation of the dependent vari­
able meets accepted criteria for MCE. In statistical terms, we have measurements from an unper­
turbed parent distribution with unbiased sampling. 

(2) Anomalous Perturbation. Nature is modified by some anomalous interaction. That is, we expect 
an interaction of a "force" type. In statistical parlance, we have measurements from a perturbed 
parent distribution with unbiased sampling. 

(3) Decision Augmentation. Nature is unchanged but the measurements are biased. That is, AC in­
formation has "distorted" the sampling. In statistical terms, we have measurements from an unper­
turbed parent distribution with biased sampling. 

(4) Combination. Nature is modified and the measurements are biased. That is, both anomalous ef­
fects are present. In statistical parlance, we have conducted biased sampling from a perturbed par­
ent distribution. 
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General Considerations and Definitions 

Since the formal discussion of OAT is statistical, we will describe the overall context for the develop­

ment of the model from that perspective. Consider a random variable,X, that can take on continuous 

values (e.g., the normal distribution) or discrete values (e.g., the binomial distribution). Examples of X 

might be the hit rate in an RNG experiment, the swimming velocity of single cells, or the mutation rate 

of bacteria. Let Ybe the average of X computed over n values, where n is the number of items that are 

collected as the result of a single decision-one trial. Often this may be equivalent to a single effort 

period, but it also may inc1ude repeated efforts. The key point is that, regardless of the effort style, the 

average value of the dependent variable is computed over the n values resulting from one decision 

point. In the examples above, n is the sequence length of a single run in an RNG experiment, the num­

ber of swimming cells measured during the trial, or the number of bacteria-containing test tubes present 

during the trial. As we will show below, force-like effects require that the Z-score, which is computed 

from the Ys, increase as the square root of n. In contrast, informational effects will be shown to be inde­

pendent of n. 

Assumptions for DAT 

We assume that the parent distribution of a physical system remains unperturbed; however, the mea­

surements of the physical system are systematically biased by some AC-mediated informational pro­

cess. 

Since the deviations seen in experiments in the statistical regime tend to be small in magnitude, it is safe 

to assume that the measurement biases will also be small; therefore, we assume small shifts of the mean 

and variance of the sampling distribution. Figure 1 shows the distributions for biased and unbiased 

measurements. 

Z-Scores 

Figure 1. Sampling Distribution Under OAT. 

The biased sampling distribution shown in Figure 1 is assumed to be normally distributed as: 

Z - N(pn a;), 

where liz and Or are the mean and standard deviation of the sampling distribution. 
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Assumptions for an Anomalous Perturbation Model 

DAT can be contrasted to force-like effects. With a few exceptions reported in the literature of "field" 

phenomena, anomalous perturbation appears to be relatively "small." Thus, we begin with the assump­

tion that a putative anomalous force would give rise to a perturbational interaction, by which we mean 

that, given an ensemble of entities (e.g., binary bits, cells), an anomalous force would act equally on each 

member of the ensemble, on the average. We call this type of interaction micro-AP. 

Figure 2 shows a schematic representation of probability density functions for a parent distribution un­

der the micro-AP assumption and an unperturbed parent distribution. In the simplest micro-AP model, 

the perturbation induces a change in the mean of the parent distribution but does not effects its vari­

ance. We parameterize the mean shift in terms of a multiplier of the initial standard deviation. Thus, 

we defme an AP-effect size as: 

tul - flo) 
EAP = a ' , 0 

where 1'1 and J10 are the means of the perturbed and unperturbed distributions, respectively, and where 

00 is the standard deviation of the unperturbed distribution. 

J10 fll = flo + ElJ1fJo 

Dependent Variable 

Figure 2. Parent Distribution for micro-AP. 

For the moment, we consider EAP as a parameter which, in principle, could be a function of a variety of 

variables (e.g., psychological, physical, environmental, methodological). As we develop DAT for specif­

ic distributions and experiments, we wilJ discuss this functionality of EAP 

Calculation of E(Z2) 
We compute the expected value and variance of Z2 for mean chance expectation and under the force­

like and information assumptions. We do this for the normal and binomial distributions. The details of 

the calculations can be found in the Appendix; however, we summarize the results in this section. Thble 

1 shows the results assuming that the parent distribution is normal. 

7 
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Thble 1. 

Normal Parent Distribution 

Mechanism 
Quantity 

MCE micro-AP DAT 

E(Z2) 1 1 + Et,n Il; + a; 

Var(z2) 2 2(1 + 2E1n) 2(a: + 'ql;a;) 

Thble 2 shows the results assuming that the parent distribution is binomial. In this calculation,po is the 

binomial event probability and ao = .../po(l-po}. 

Thble 2. 

Binomial Parent Distribution 

- Mechanism 
Quantity 

MCE micro-AP DAT 

E(ZZ) 
E . 

Il; + a; 1 1 + E1.(n - 1) + c:: (1 - 2po) 

Var(Z2) 2 + _1_(1 - 60'2) 2(1 + 2E1n}" 2(0-: + 'ql;a;) na2 0 
0 

• The variance shown assumes PO = 0.5 and n ~ 1. See the Appendix for other cases. 

We wish to emphasize at this point that in the development of the mathematical model, the parameter 

SAP for micro-AP, and the parameters 14, and O'z in DAT may all possibly depend upon n; however, for 

the moment, we assume that they are all n-independent. We shall discuss the consequences of this as­

sumption below. 

Figure 3 displays these theoretical calculatioJls for the three mechanisms graphically. 

n 

large 

• I 

micro-AP 

sJall 
DAT 

MCE 

Figure 3. Predictions of MC£, micro-AP, and DA,[ 

Approved For Release 2000/08/10 : CIA-RDP96-00791 R000200280002-5 8 



Within the constraints mentioned above, this formulation predicts grossly different outcomes for these 

models and, therefore, is ultimately capable of separating them, even for very small perturbations. 

Retrospective Tests 
It is possible to apply OAT retrospectively to any body of data that meet certain constraints. It is critical 

to keep in mind the meaning of n-the number of measures of the dependent variable over which to 

compute an average during a single trial following a single decision In terms of their predictions for 

experimental results, the crucial distinction between OAT and the micro-AP model is the dependence 

of the results upon n; therefore, experiments which are used to test these theories must be those in 

whichn is manipulated and participants are held blind to its values. May, Spottiswoode, Vtts and James 

(1994) retrospectively apply OAT to as many data sets as possible, and examine the consequences of any 

violations of these criteria. 

Aside from these considerations, the application of OAT is straight forward. Having identified the unit 

of analysis and n, simply create a scatter diagram of points (Z2, n) and compute a least square fit to a 

straight line. Thbles 1 and 2 show that for the micro-AP mode~ the square of the effect size is the slope of 

the resulting fit. A Student's t- test may be used to test the hypothesis that the effect size is zero, and thus 

test for the validity of the micro-AP model If the slope is zero, these same tables show that the intercept 

may be interpreted as an AC strength parameter for OAT. A follow-on paper will describe these tech­

niques in detail (May, Spottiswood, and Vtts, 1994). 

Prospective Tests 
A prospective test of OAT could not only test whether anomalous effects occurred, but would also dif­

ferentiate between micro-AP and OAT. In such tests, n should certainly be a double-blind parameter 

and take on at least two values. If you wanted to check the prediction of a linear functional relationship 

between n and the E(Z2) that is suggested by micro-AP model, the more values of n the better. It is not 

possible to separate the micro-AP model from OAT at a single value of n. 

In any prospective test, it is helpful to know the number of runs, N, that are necessary to determine with 

95% confidence, which of the two models best fits the data. Figure 4 displays the problem graphically. 

Figure 4. Model Predictions for the Power Calculation. 
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Under micro-AP, 95% ofthe values ofZ2wiJ] be greater than the point indicated in Figure 4. Even if the 

measured value ofZ2 is at this point, we would like the lower limit of the 95% confidence interval for this 

value to be greater than the predicted value under the OAT model. Or: 

( 2) aAP 6 aAP ( 2) E ZAP - 1.645 IN - 1.9 0 IN 2! EAc Z . 

Solving for N in the equality, we find: 
2 

[ 
3.605 aAP ] 

N = EAP(Z2) - EAC(Z2) . 
(1) 

Since a AP > a ACt this value ofN will always be the larger estimate than that derived from beginning with 

OAT and calculating the confidence intervals in the other direction. 

Suppose, from an earlier experiment, one can estimate a single-trial effect size for a specific value of n, 

say nl. Th determine whether the micro-AP model or OAT is the proper description of the mechanism, 

we must conduct another study at an additional value of n, say n2. We use Equation 1 to compute how 

many runs we must conduct at n2 to assure a separation of mechanism with 95% confidence, and we use 

the variances shown in Thbles 1 and 2 to compute a AP Figure 5 shows the number of runs for an RNG­

like experiment as a function of effect size for three values of n2. 

We chose nl = 100 bits because it is typical of the numbers found in the RNG database and the values of 

n2 shown are within easy reach of today's computer-based RNG devices. For example, assuming oz = 
1.0 and assuming an effect size of 0.004, a value derived from a publication of PEAR data (Jahn, 1982), 

thenatnl = 100,,tJz = 0.004 x y"IUlT = 0.04andEAc(Z2) = 1.0016. Supposen2 = 104, thenEAP(Z2) = 

1.160 and a AP = 1.625. Using Equation 1, we fmd N = 1368 runs, which can be approximately obtained 

from Figure 5. That is in this example, 1368 runs are needed to resolve the micro-AP model from OAT 

atn2 = 104 at the 95% confidence level. Since these runs are easily obtained in most RNG experiments, 

an ideal prospective test of OAT, which is based on these calculations, would be to conduct 1500 runs 

randomly counterbalanced between n = 102 and n = 104 bits/trial. If the effect size at n = 102 is near 

0.004, than we would be able to distinguish between micro-AP and OAT with 95% confidence. 

AC Effect Size at nl = 100 bits 

Figure 5. Runs Required for RNG Effect Sizes 
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Figure 6 shows similar relationships for effect sizes that are more typical of anomalous perturbation 

. experiments using biologic8.I target systems (May and Vilenskaya, 1994). 

In this case, we chose nl = 2 because it is easy to use two targets simultaneously. Ifwe assume an effect 

size of 0.3 andaz = 1.0, atn2 = 10wecomputeEAc(Z2) = 1.180,EAP(Z2) = l.900,aAP = 2.366andN= 

140, which can be approximately obtained from Figure 6. 

We have included n2 = 100 in Figure 6, because this is within reach in cellular experiments although it is 

probably not practical for most biological experiments. 

10000~----------~----~----~--~~~~~~~ 

<Il 

~ 1000 

100 

10 

1 L-__________ ~ ____ ~ ____ ~ __ ~ __ ~~~~~ 

0.1 1.0 

Effect Size at nl = 2 units 

Figure 6. Runs Required for Biological Effect Sizes 

We chose nl = 2 units for convenience. For example in a plant study, the physiological responses can 

easily be averaged over two plants and n2 = 10 is within reason for a second data point. A unit could be a 

test tube containing cells or bacteria; the collection of all ten test tubes would simultaneously have to be 

the target to meet the constraints of a valid test. 

The prospective tests we have described so far are conditional; that is, given an effect size, we provide a 

protocol to test if the mechanism for the anomalies is micro-AP or OAT. An unconditional test does not 

assume any effect size; all that is necessary is to collect data at a large number of different values of n, 

and fit a straight line through the resultingZ2s. The mechanism is micro-AP if the slope is non-zero and 

may be OAT if the slope is zero. 

Stouffer's Z Tests 
One consequence ofDAT is that more decision points in an experiment lead to stronger results, because 

an operator has more opportunity to exercise AC abilities. We derive a test criteria to determine wheth­

er a force-like interaction or an informational mechanism is a better description of the data. 

Consider two experiments of M decisions at nl and N decisions at n2, respectively. Regardless of the 

mechanism, the Stouffer's Z for the first experiment is given by: 
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M 

.;n;I£v 
(I) I-I r:::r:; 

Z, = 1M = "nIM£I' 

_ where £lJ is the effect size for one decision and where £1 is the average effect size over the M decisions. 

Under the micro-AP assumption that the effect size, £1, is constant regardless of n, Stouffer's Z in the 

second experiment is given by: 

Under the OAT assumption that the effect size is proportional to llyn, the Stouffer's Z in the second 

experiment becomes: 

Z (2) = IN Z(I) .' VM I' 

As in the other tests of OAT, if data are collected at two values of n, then a test between these Stouffer's 

Z values may yield a difference between the .competing mechanisms. 

Discussion 
We now address the possible n-dependence of the model parameters. A degenerate case arises if E AP is 

proportional to llyn; if that were the case, we could not distinguish between the micro-AP model and 

OAT by means of tests on the n dependence of results. If it were the case that in the analysis of the data 

from a variety of experiments, participants, and laboratories, the slope of a Z2vs n linear least-squares 

fit were zero, then either £AP = 0.0 or EAP is proportional to llyn, the accuracy depending upon the 

precision of the fit (i.e., errors on the zero slope). An attempt might be made to rescue the micro-AP 

hypothesis by explaining the llyn dependence of £ AP in the degenerate case as a fatigue or some other 

time dependence effect. That is, it might be hypothesized that anomalous perturbation abilities would 

decline as a function of n; however, it seems improbable that a human-based phenomenon would be so 

widely distributed and constant and give the llyn dependency in differing protocols needed to imitate 

OAT. We prefer to resolve the degeneracy by wielding Occam's razor: if the only type of anomalous 

perturbation which fits the data is indistinguishable from AC, and given that we have ample demonstra­

tions of AC by independent means in the laboratory, then we do not need to invent an additional phe­

nomenon called anomalous perturbation. Except for this degeneracy, a zero slope for the fit allows us 

to reject all micro-AP models, regardless of their n-dependencies. 

OAT is not limited to experiments that capture data from a dynamic system. OAT may also be the mech­

anism in protocols which utilize quasi-static target systems. In a quasi-static target system, a random 

process occurs only when a run is initiated; a mechanical dice thrower is an example. Yet, in a series of 

unattended runs of such a device there is always a statistical variation in· the mean of the dependent 

variable that may be due to a variety of factors, such as Brownian motion, temperature, humidity, and 

possibly the quantum mechanical uncertainty principle (Walker, 1974). Thus, the results obtained will 

ultimately depend upon when the run is initiated. It is also possible that a second-order OAT mecha­

nism arises because of protocol selection; how and who determines the order in tri-polar protocols. In 

second order DAT there may be individuals, other than the formal subject, whose decisions effect the 
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experimental outcome and are modified by AC. Given the Ii.mited possibilities in this case, we might 
. expect less of an impact fro-m OAT. 

In sUlveying the range of anomalous mental phenomena, we reject the evidence for experimental mac­

ro-AP because of poor artifact control and accept the evidence for precognition and micro-AP because 

of the large number of studies and the positive results of the meta-analyses. We believe that OAT, there­

fore, might be a general model for anomalous mental phenomena in that it reduces mechanisms for 

laboratory phenomena to only one-the anomalous transtemporal acquisition of information. 
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Appendix 

Mathematical Derivations for the Decision Augmentation Theory 
In this appendix we develop the formalism for the Decision Augmentation Theory (DA n. We consider 

cases for mean chance expectation, force-like interactions, and informational processes under two as­

sumptions-normality and Bernoulli sampling. For each of these three models, we compute the ex­

pected values of Z and Z2, and the variance' of Zr 

Mean Chance Expectation 

Normal Distribution 

We begin by considering a random variable,X, whose probability density function is normal, (i.e., N(p.o, 

ao2)t). After many unbiased measures from this distribution, it is possible to obtain reasonable ap­

proximations to p.o and ao2 in the usual way. Suppose n unbiased measures are used to compute a new 

variable, Y, given by: 

Then Yis distributed as N(p.o, on 2), where an2 = ao2/n. If Z is defined as 

Z = Yk - 1'-0 
a" ' 

then Z is distributed as N (0, 1) and E(Z) is given by: 

III 

EN (Z) - _1_ I ze-o.sz2dz - 0 MCE -.n,; -. 
-CD 

Since Mlr(Z) = 1 = E(Z2) - £2(Z), then 

.. 
EN (Z2) - _1_ f z2e-o.sz2dz - 1 

MCE -& -. 
- .. 

• We wish to thank Zoltan Vassy for originally suggesting the Z2 formalism. 
t Throughout this appendix, this notation means: 

(
X-Jll2 

N(p.,if) = ~e-O's -a . 
a~2n 
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.. 
EN (Z4) - _1_ f Z4e-O.sz2dz = 3 

MCE -& .. 

So 

Bernoulli Sampling 

(3 ) 

Let the probability of observing a one under Bernoulli sampling be given by po. After n samples, the 

discrete Z-score is given by: 

where 

Z = k - npo 
uo.fri ' 

Uo = jPo(l - Po), 

and k is the number of observed ones ( 0 <* < n). The expected value of Z is given by: 

where 

Bt(n,po) = (~) p~(l - PO)N-Ic. 

The first term in Equation 4 is the E(k) which, for the binomial distribution, is nPO. Thus 

The expected value of zJ is given by: 

E:"CE(Z2) = Var(Z) + E2(Z), 

= Var(k - npo) + 0 
nu2 ' o 

nu2 

EB (Z2) = _0 = 1. 
MCE nu2 

o 

As in the normal case, the Mlr(Z2) = E(Z4) - E2(Z2) = E(Z4) - 1. But· 

• Johnson, N. L, and S. Kotz, Discrete Distributions, John Wiley & Sons, New York, p. 51, (1969). 

(4) 

(5) 

(6) 
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= 3 + -\(1 - 6a~). nao 

So, 

Var!ciz2) = 2 + ~(1 - 6a~) = 2 -~, (Po = 0.5). 
nao . 

Force-Like Interactions 

Normal Distribution 

(7) 

Under the perturbation assumption described in the text, we let the mean of the perturbed distribution 

be given by,uo+ eapl1O, where tap is an anomalous-perturbation strength parameter, and in the general 

case may be a function of n and time. The parent distribution for the random variable, X, becomes 

NCpo+ tapao, (0 2). As in the mean-chance-expectation case, the average of n independent values of X, 

is Y", NCpo + tapao, Oiz 2). Let 

y = ,uo + tapl10 + Lly, 
where 

Lly = y - (Po + Bapl10)' 

For a mean of n samples, the Z-score is given by 

where ~ is distributed asN(O, 1) and is given by Lly / Oiz. Then the expected value of Z is given by 

E~(Z) = EAP(tap./n + ~) = tap./n + E(~) = tap./n. 

and the expected value of Z2 is given by 

= 1 + t~n, 

since E(t) = 0 and E(t?J = 1. 

(8) 

(9) 

In general, Z2 is distributed as a non-central X 2 with 1 degree of freedom and non-centrality parameter 

nl'tJp2, X2(1, nl'tJp2). Thus, the variance of Z 2is given by· 

(10 ) 

Bernoulli Sampling 

As before,let the probability of observing a one under mean chance expectation be given by PO, and the 

discrete Z-score be given by: 

• Johnson, N. 1.., and S. Kotz, Continuous Univariate Distributions-2, John Wiley & Sons, New York, p. 134, (1970). 
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Z - k - npo - Gom ' 
where k is the number of observed ones (0 < k < n). Under the perturbation assumption, we let the 

mean of the distribution of the single-bit probability be given by PI = pO + EapOO, where Eap is an anoma­

lous-perturbation strength parameter. The expected value of Z is given by: 

where 

The expected value of Z becomes 

( 11 ) 

Since sap = E(Z)/Vn, so sap is also the binomial effect size. The expected value of Z2 is given by: 

E1.(z2) = Var(Z) + E2(Z), 

Expanding in terms of PI = PO + SapO()' 

( 12) 

Ifpo = 0.5 (i.e., a binary case) and n ~ 1, then Equation 12 reduces to the E(Z2) in the normal case, 

Equation 9. 

We begin the calculation of Var(Z2) by using the equation for the jth moment of a binomial distribution 

mJ = ~[(q + pet)"] I t-O' 

Since Var(Z2) = E(Z4) - E2(Z2), we must evaluate E(Z4). Or, 

Expanding n -20() -4(k - nPO)4, using the appropriate moments, and subtracting E2(Z2) , yields 

( 13 ) 
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Where 

Under the condition that Eap ~ 1 (a frequent occurrence in many experiments). we ignore any terms of 

higher order than tap 2. Then the variance reduces to 

1 [ 2 (1 - 7E~) Eap 2 ] ii' - 6 + 36Eap + 2 + -3 (1 - 2po)(I2po - 12po + 1) . ao ao 

We notice that when E = 0, the variance reduces to the mean-chance-expectation case for Bernoulli 

sampling. When n » 1, E ~ 1, and PO = 0.5, the variance reduces to that derived under the normal 

distribution assumption. Or, 

(14 ) 

Information Process 

Normal Distribution 

The primary assumption in this case is that the parent distribution remains unchanged, (i.e., N(I/{), ao 2). 

It further assumes that because of an anomalous-cognition-mediated bias the sampling distribution is 

distorted leading to a Z-distribution as N(J.tac. aac2). In the most general case, ,uac and aac may be func­

tions of n and time. 

The expected value of Z is given by (by definition) 

E~c(Z) = ,uac' 
The expected value of Z2 is given by definition as 

E~C(Z2) =,u~ + a~. 

The ~r(Z2j can be calculated by noticing that 

Z2 _ ~ (1 ,u~.) 
a!, ..., a!, . 

So the Mlr(Z2) is given by 

( 15) 

(16 ) 
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var(~2) = 2(1 + 2,u~C-) 
aGe aac 

Bernoulli Sampling 

(17 ) 

As in the normal case, the primary assumption is that the parent distribution remains unchanged, and 

that because of a psi-mediated bias the sampling distribution is distorted leading to a discrete Z-dis­

tribution characterized by Jlac(n) and C1ac 2(n). Thus, by definition, the expected values of Z and Z2 are 

given by 

( 18) 

E!C(Z2) = ,u;" + a;c. 

For any value of n, estimates of these parameters are calculated from N data points as 

The Var(Z2) for the discrete case is identical to the continuous case. Therefore 

( 19) 
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Christine L. James 
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Decision Augmentation Theory (DAT) provides an informational mechanism for a class of anomalous 

mental phenomena which have hitherto been viewed as being caused by a force-like mechanism. Under 

specifiable conditions, DAT's predictions for statistical anomalous perturbation databases are differ­

ent from those of all force-like mechanisms. For large random number generator databases, DAT pre­

dicts a zero slope for a least squares fit to the (Z~n) scatter diagram, where n is the number of bits result­

ing from a single run and Z is the resulting Z-score. We fmd a slope of (1. 73±3.19) X 10-6 (t = 0.543, df 

= 126, P = 0.295) for the historical binary random number generator database which strongly suggests 

that some informational mechanism is responsible for the anomaly. In a 2-sequence length analysis of a 

limited set of RNG data from the Princeton Engineering Anomalies Research laboratory, we find that a 

force-like explanation misses the observed data by 8.6-0; however, the observed data are within 1.1-0 of 

the DAT prediction. We also apply DAT to one pseudorandom number generator study and find that its 

predicted slope is not significantly different from the expected value for an informational mechanism. 

We review and comment on six published articles that discussed DAT's earlier formalism (i.e., Intuitive 

Data Sorting). We found two studies that support a force-like mechanism. Our analysis of Braud's 1990 

hemolysis study confirms his fmding in favor of an influence model over a selection one (p = 0.023), and 

Braud and Schlitz (1989) demonstrated a force-like interaction in their remote staring experiment (p = 
0.020). We provide six circumstantial arguments against an influence hypothesis. Our anomalous 

cognition research suggests that the quality of the data is proportional to the total change of Shannon 

entropy. We demonstrate that the change of Shannon entropy of a binary sequence from chance is in­

dependent of sequence length; thus, we suggest that a fundamental argument supports DAT over influ­

ence models. In our conclusion, we suggest that, except for one special case, the physical random num­

ber generator database cannot be explained by any influence model, and that contradicting evidence 

from two experiments on biological systems should inspire more investigations in a way that would al­

low valid DAT analyses. 
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Introduction 

May, Utts, and Spottiswoode (1994) proposed Decision Augmentation Theory as a general model of 

anomalous mental phenomena.· DAT holds that anomalous cognition information is included along 

_ with the usual inputs that result in a final human decision that favours a "desired" outcome. In statisti­

cal parlance, DAT says that a slight, systematic bias is introduced into the decision process by anoma­

lous cognition. 

This concept has the advantage of being quite general. We know of no experiment that is devoid of at 

least one human decision; thus, DAT might be the underlying basis for anomalous mental phenomena. 

May et al. (1994) mathematically developed this concept and constructed a retrospective test algorithm 

than can be applied to existing databases. In this paper, we summarize the theoretical predictions of 

DAT, review the criteria for valid retrospective tests, and analyze the historical random number genera­

tor (RNG) database. In addition, we summarize the findings from one prospective test of DAT and 

comment on the published criticisms of an earlier formulation, which was then called Intuitive Data 

Sorting. We conclude with a discussion of the RNG results that provide a strong circumstantial argu­

ment against a force-like explanation. As part of this review, we show that one biological-AP experi­

ment is better described by an influence model. 

Review of Decision Augmentation Theory 
Since the formal discussion of DAT is statistical, we will describe the overall context for the develop­

ment of the model from that perspective. Consider a random variable, X, that can take on continuous 

values (e.g., the normal distribution) or discrete values (e.g., the binomial distribution). Examples of X 

might be the hit rate in an RNG experiment, the swimming velocity of single cells, or the mutation rate 

of bacteria. Let Ybe the average of X computed over n values, where n is the number of items that are 

collected as the result of a single decision-one trial. Often this may be equivalent to a single effort 

period, but it also may include repeated efforts. The key point is that, regardless of the effort style, the 

average value of the dependent variable is computed over the n values resulting from one decision 

point. In the examples above, n is the sequence length of a single run in an RNG experiment, the num­

ber of swimming cells measured during the trial, or the number of bacteria-containing test tubes present 

during the trial. As we will show below, force-like effects require that the Z-score, which is computed 

from the Ys, increase as the square root of n. In contrast, informational effects will be shown to be inde­

pendent of n. 

Under DA1; we assume that the underlying parent distribution of a physical system remains unper­
turbed; however, the measurements of the physical system are systematically biased by an AC-mediated 

informational process. Since the deviations seen in actual experiments tend to be small in magnitude, it 

is safe to assume that the measurement biases are small and that the sampling distribution will remain 

normal; therefore, we assume the bias appears as small shifts of the mean and variance of the sampling 

distribution as: 

• The Cognitive Sciences Laboratory has adopted the term anomalous mentalphenomena instead of the more widely knownpsi. 
Likewise, we use the terms anomalous cognition and anomalous perturbation for ESP and PK, respectively. We have done so 
because we believe that these terms are more naturally descriptive of the obselVables and are neutral in that they do not imply 
mechanisms. These new terms will be used throughout this paper. 
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where I.Iz and Oz are the mean and standard deviation of the sampling distribution. Under the null hy­

pothesis,,tlz = 0.0 and Oz =-1.0. 

Review of an Influence Model 
For comparison's sake, we summarize a class of influence models. We begin with the assumption that a 

putative anomalous force would give rise to a perturbational interaction by which we mean that given an 

ensemble of entities (e.g., random binary bits), an anomalous force would act equally on each member 

of the ensemble, on the average. We call this type of interaction micro-AP. 

In the simplest micro-AP model, the perturbation induces a change in the mean of the parent distribu­

tion but does not effect its variance. We parameterize the mean shift in terms of a multiplier of the 

initial standard deviation. Thus: 

fl.l = fl.o + eo 0o, 

where J.ll and 1'<1 are the means of the perturbed and unperturbed distributions, respectively, and where 

00 is the standard deviation of the unperturbed distribution. tAP can be considered the AP effect size. 

Under the null hypothesis for binary RNG experiments,fl.1 = f.J{) = 0.5, ao = 0.5, and tAP = o. 
The expected value and the variance of Z2 for mean chance expectation and under the force-like and 

information assumptions for the normal distribution are shown in Table 1. The details of the calcula­

tions can be found in May, Utts, and Spottiswoode (1994). 

Thble 1. 

Normal Parent Distribution 

Mechanisms 
Quantity 

MCE Micro-AP DAT 

E(Z2) 1 1 + e!,.n fl.: + a: 

Var(zl) 2 2(1 + 2t1.n) 2( a: + 2,l:0:) 

Figure 1 graphically displays these theoretical calculations for the three mechanisms. 

1~~~=------------------

n 

large 
t 

micro-AP 

sJal1 

DAT 

MCE 

Figure 1. Predictions of MCE, micro-AP, and OAT 
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This formulation predicts grossly different outcomes for these models and, therefore, is ultimately ca­

pable of separating them, even for very small effects. The important differences are in the slope and 

intercept values. MCE gives a slope ofzero and an intercept of one. Oat predicts a slope of zero, but an 

intercept greater than one, and Micro-AP predicts an intercept of one, but a slope greater than zero. 

Monte Carlo Verification 

The expressions shown in Thble 1 are representations which arise from simple algebraic manipulations 

of the basic mathematical assumptions of the models. Th verify that these expressions give the expected 

results, we used a published pseudo random number generator (Lewis, 1975) with well-understood 

properties to produce data that mimicked the results under three models (i.e., MCE, micro-AP and 

OAT). Our standard implementation of the pseudo-RNG allows the integers in the range (0,215 -1] as 

potential seeds. For the sequence lengths 100,500, 1000, and 5000, we computed Z-scores for all pos­

sible seeds with an effect size of 0.0 to simulate MCE and an effect size of O. 03 to simulate micro-AP. Th 

simulate OAT, we used the fact that in the special case where the effect size varies as 1 Iy'n, micro-AP 

and OAT are equivalent. For this case we used effect sizes of 0.030, 0.0134, 0.0095, and 0.0042 for the 

above sequence lengths, respectively. Figu!es 2a-c show the results of 100 trials, which were chosen 

randomly from the appropriate Z-score data sets, at each of the sequence lengths for each of the mod­

els. In each Figure, MCE is indicated by a horizontal solid line at Z2 = l. 
The slope of a least squares fit computed under the MCE simulation was -(2.81±2.49) X 10-6, which 

corresponded to a p-value of 0.812 when tested against zero, and the intercept was 1.007±O.OO5, which 

corresponds to ap-value of 0.131 when tested against one. Under the micro-AP model, an estimate of 

the effect size using the expression in Thble 1 was SAP = 0.0288±0.002, which is in good agreement with 

0.03, the value that was used to create the data. Similarly, under OAT the slope was -(2.44±57.1O) X 

10-8, which corresponded to a p-value of 0.515 when tested against zero, and the intercept was 

1.050±o.001, which corresponds to ap-value of 2.4 X 10-4when tested against one. 

Thus, we are able to say that the Monte Carlo simulations confirm the simple formulation shown in 

Thble 1. 

Retrospective Tests 
It is possible to apply OAT retrospectively to any body of data that meet certain constraints. It is critical 

to keep in mind the meaning of n-the number of measures of the dependent variable over which to 

compute an average during a single trial following a single decision In terms of their predictions for 

experimental results, the crucial distinction between OAT and the micro-AP model is the dependence 

of the results upon n; therefore, experiments which are used to test these theories ideally should be 

those in which experiment participants are blind to n, and where the distribution of n does not contain 

extreme outliers. 

Aside from these considerations, the application of OAT is straight forward. Having identified the unit 

of analysis and n, simply create a scatter diagram of points (Z~ n) and compute a weighted least square 

fit to a straight line. Thble 1 shows that for the micro-AP modet the slope of the resulting fit is the square 

of the AP-effect size. A student's t-test may be used to test the hypothesis that the AP-effect size is zero, 

and thus test for the validity of the micro-AP model If the slope is zero, these same tables show that the 
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and thus test for the validity of the micro-AP model If the sl~pe is zero, these same tables show that the 

intercept may be interpreted as a strength parameter for DAT. In other words, an intercept larger than 

one would support the DAT model, while a slope greater than zero would support the micro-AP model. 

If the DAT strength is presumed to be constant (i.e., #z and Oz are constant) then an additional test is 

possible. That is, in two experiments involvingN at nl and M at n2 decisions, respectively, DAT predicts 

that Stouffer's Z's of these experiments should be in the ratio of vNTM and vFlTKT X vn2!nl for AP. 

1.6 

1.2 1. I 1 

0.8 t I 

0.4 

1 
I 

0.0 0 ..................... 1....l.2oo ............ ~24Loo ............ ~3....l.800~~4...J8oow....................J60oo 

(a) 

1.6 

1.2 ~JJ-.--.---.-- --.J--. 
I I I 

O.S 

0.4 

(b) 

0.0 '--'-'~ ............ ~'-'--'~--'--'-~~"-'--'--'-'-' 
o 1200 2400 3600 4800 6000 

(c) 

Figure 2. Z2 vs n for Monte Carlo Simulations of MCE, micro-AP, and DAT. 

Historical Binary RNG Database 

Radin and Nelson (1989) analyzed the complete literature (i.e., over 800 individual studies) of con­

sciousness-related anomalies in random physical systems. They demonstrated that a robust statistical 

anomaly exists in that database. Although they analyzed this data from a number of perspectives, they 

report an average Z I Vii effect size of approximately 3 X 10-4, regardless of the analysis type. Radin 

and Nelson did not report p-values, but they quote a mean Z of 0.645 and a standard deviation of 1.601 

for 597 studies. We compute a single-mean t-score of 9.844, df = 596 (p = 3.7 X 10-21). 

We returned to the original pUblications of all the binary RNG studies from those listed by Radin and 

Nelson and identified 128 studies in which we could compute, or were given, the average Z-score, the 
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number of runs, N, and the sequence length, n, which ranged from 16 to 10,000. For each of these stud­

ies we computed: 

(1) 

- Since we were unable to determine the standard deviations of the Z-scores from the literature, we as­

sumed that Sz = 1.0 for each study. We see from Thble 1 that under mean chance expectation the ex­

pected variance of each Z2 is 20 so that the estimated standard deviation for the V for a given study is 

vT.lJfN· 
Figure 3 shows a portion of the 128 data points ~n). MCE is shown as a solid line (i.e., Z2 = 1), and 

the expected best-fit lines for two assumed AP effect sizes of 0.01 and 0.003, respectively, are shown as 

short dashed lines. We calculated a weighted (i.e., usingN/2.0 as the weights) least squares fit to an a + 
b*n straight line for the 128 data points and display it as a long-dashed line. For clarity, we have offset 

and limited the Z2 axis and have not shown the error bars for the individual points, but the weights and 

all the data were used in the least squares fit. We found an intercept of a = 1.036±0.004. The I-stan­

dard error for the intercept is small and is shown in Figure 3 in the center of the sequence range. The 

t-score for the intercept being different from 1.0 (Le., t = 9.1, df = 126, P = 4.8 X 10-20) is in good 

agreement with that derived from Radin and Nelson's analysis. Since we set standard deviations for all 

the Z's equal to one; and since Radin and Nelson showed that the overall standard deviation was 1.6, we 

would expect that our analysis would be more conservative than theirs because a larger standard devi­

ation would increase our computed value for the intercept. 

The important result, however, was that the slope of the best-fit line was b = (1. 73±3.19) X 10-6 

(t = 0.543, df = 126, P = 0.295), which is not significantly different from zero. Adding and subtracting 

one standard error to the slope estimate produces and interval that encompasses zero. Even though a 

very small AP effect size might fit the data at large sequence lengths, it is clear in Figure 3 what happens 

at small sequence lengths; an EAP = 0.003, suggests a linear fit that is significantly below the actual fit. 
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Figure 3. Binary RNG Database: Slope and Intercept for Best Fit Line 
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The sequence lengths from this database are not symmetric nor are they uniformly distributed; they 

contain outliers (i.e., median = 64, average = 566). Figure 4 shows that the lower half of the data, how­

ever, is symmetric and nearly uniformly distributed (i.e., median = 35, average = 34). Since the criteri­

on for a valid retrospective test is that n should be uniform, or at least not contain outliers, we analyzed 

-- the two median halves independently. The intercept for the weighted best-fit line for the uniform lower 

half is a = J.022±0.OO6 (t = 3.63, df= 62,p = 2.9 x 10-,,), and the slope isb = (-0.034±3.70) X 10-4 

(t = -0.010, df = 62, p = 0.504). The fits for the upper half yield a = J.064±0. 005 (t = 13.47, df = 62, p 

= 1.2 X 10-41) andb = (-4.52±2.38) X 10-6 (t = -1.903, df= 62,p = 0.969), for the intercept and 

slope, respectively. 

Since the best retrospective test for DAT is one in which the distribution of n contains no outliers, the 

statistically zero slope for the fit to the lower half of the data is inconsistent with a simple AP model. 

Although the same conclusion could be reached from the fits to the database in its entirety (i.e., Figure 

3), we suggest caution in that this fit could possibly be distorted by the distribution of the sequence 

lengths. That is, a few points at large sequence lengths can easily influence the slope. Since the slope for 

the upper half of the data is statistically slightly negative, it is problematical to assign an imaginary AP 

effect size to these data. More likely, the results are distorted by a few outliers in the upper half of the 

data. 

0 . .30 

~ .... 
jg 0.20 
01) 

0 

0.10 

Sequence Length (n) 

Figure 4. Historical Database: Distribution of Sequence Lengths < 64. 

From these analyses, it appears that Z2 does not linearly depend upon the sequence length; however, 

since the scatter is so large, even a linear model is not a good fit (i.e., Xl = 171.2, df = 125, p = 0.0038), 

whereX2 is a goodness-of-fit measure in general given by: 

where the 0) are the errors associated with data pointYj ,h is the value ofthe fitted function at pointJ~ and 

v is the number of data points. 
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A "good" fit to a set of data should lead to a non-significantX2. The fit is not improved by using higher 

order polynomials (i.e.,X2 ~ 170.8, df = 124; X2 = 174.1, df =-123; for quadratics and cubics, respective­

ly). If, however, the AP effect size was any monotonic function of n other than the degenerate case 

where the AP effect size is exactly proportional to 1 /'110., it would manifest as a non-zero slope in the 

-- regression analysis. 

Within the limits of this retrospective analysis, we conclude for RNG experiments that we must reject all 

influence models which propose a shift of the mean of the parent distribution. 

Princeton Engineering Anomalies Research Laboratory RNG Data 

The historical database that we analyzed does not include the extensive RNG data from the Princeton 

Engineering Anomalies Research (PEAR) laboratory since the total number of bits in their experi­

ments exceeds the total amount in the entire historical database. For example, in a recent report Nel­

son, Dobyns, Dunne, and Jahn (1991) analyze 5.6 X 106 trials all at n = 200 bits. In this section, we 

apply DAT retrospectively to their published work where they have examined other sequence lengths; 

however, even in these cases, they report over five times as much data as in the historical database. 

Jahn (1982) reported an initial RNG data set with a single operator at n = 200 and 2,000. Data were 

collected both in the automatic mode (i.e., a single button press produced 50 trials at n) and the manual 

mode (i.e., a single button press produced one trial at n). From a DAT perspective, data were actually 

collected atfour values ofn (i.e., 200, 2000, 200X50 = 10,000, and2000x50 = 100,000). Unfortunately 

data from these two modes were grouped together and reported only at 200 and 2,000 bit/trial. It would 

seem, therefore, we would be unable to apply DAT to these data. J ahn, however, reports that the differ­

ent modes" ... give little indication of importance of such factors in the overall performance." This qual­

itative statement suggests that the micro-AP model is indeed not a good description for these data, be­

cause, under micro-AP, we would expect stronger effects (i.e., higher Z -scores) at the longer sequence 

lengths. 

Nelson, JaOO, and Dunne (1986) describe an extensive RNG and pseudo-RNG database in the manual 

mode only (i.e., over 7 X 106 trials); however, whereas Jahn provide the mean and standard deviations 

for the hits, Nelson et al. report only the means. We are unable to apply OAT to these data, because any 

assumption about the standard deviations would be highly amplified by the massive data set. 

As part of a cooperative agreement in 1987 between PEAR and the Cognitive Sciences Program at SRI 

International, we analyzed a set ofRNG data from a single operator.· Since they supplied the raw data 

for each button press, we were able to analyze this data at two extreme values of n. We combined the 

individual trial Z-scores for the high and low aims, because our analysis is two-tailed, in that we examine 

Z2. 

Given that the data sets at n = 200 and 100,000 were independently significant (Stouffer's Z of 3.37 and 

245, respectively), and given the wide separation between the sequence lengths, we used DAT as a ret­

rospective test on these two data points. 

• We thank R. Jahn, B. Dunne, and R. Nelson for providing this raw data for our analysis in 1987. 
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Because we are examining only two values of n, we do not compute a best-fit slope. Instead, as outlined 

in May, Utts, and SpottisWoode (1994), we compare the micro-AP prediction to the actual data at a 

single value of n. 

Atn = 2oo,5918trialsyieldedZ = 0.044 ± 1.030 and:z2 = 1.063 ±0.019. We compute aproposedAP 

effect size 'Z I y'2lJlJ = 3.10 X 10-3. With this effect size, we computed what would be expected under 

the micro-AP model at n = 100,000. Using the theoretical expressions in Thble 1, we computed Z2 = 
1.961 ± 0.099. The i-sigma error is derived from the theoretical variance divided by the actual number 

of trials (597) atn = 100,000. The ObSe1Ved values were 'Z = 0.100 ± 0.997 and:z2 = 1.002 ± 0.050. A 

t-test between the observed and expect values of:z2 gives t = 8.643, df = 1192. Considering this t as 

equivalent to a Z, the data at n = 100,000 fails to meet what would be expected under the influence 

model by 8.6-0. Suppose, however, that the effect size observed at n = 100,000 (3.18 X 10-4) better 

represents the AP effect size. We computed the predicted value of Z2 = 1. 00002 ± 0.018 for n = 200. 

Using a t-test for the difference between the observed value and this predicted one gives t = 2.398, 

df=11,834. The micro-AP model fails in this direction by more than 2.3-0. DAT predicts that Z2 would 

be statistically equivalent at the two sequence lengths, and we find that to be the case (t = 1.14, df = 
6513, p = 0.127). 

Jahn (1982) indicates in their RNG data that "'Ii:"aced back to the elemental binary samples, these values 

imply directed inversion from chance behavior of about one or one and a half bits in every one thou­

sand .... " Assuming 1.5 excess bits/lOOO, we calculate an AP effect size of o. 003, which is consistent with 

the observed value in their n = 200 data set. Since this was the value we used in our DAT analysis, we are 

forced to conclude that this data set from PEAR is inconsistent with the simple micro-AP model, and 

that Jahn's statement is not a good description of the anomaly. 

We urge caution in interpreting these calculations. As is often the case in a retrospective analysis, some 

of the required criteria for a meaningful test are violated. These data were not collected when the oper­

ators were blind to the sequence length. Secondly, these data represent only a fraction of PEAR's data­

base. 

A Prospective Test of OAT 
In developing a methodology for future tests, Radin and May (1986) worked with two operators who 

had previously demonstrated strong ability in RNG studies. They used a pseudo-RNG, which was 

based on a shift-register algorithm by Kendell and has been shown to meet the general criteria for "ran­

domness" (Lewis, 1975), to create the binary sequences. 

The operators were blind to which of nine different sequences (i.e., n = 101, 201, 401, 701, 1001, 2001, 

4001, 7001, 10001 bits)· were used in any given trial, and the program was such that the trials lasted for a 

fixed time period and feedback was presented only after the trial was complete. Thus, the criteria for a 

valid test of DAT had been met, except that the source of the binary bits was a pseudo-RNG. 

We re-analyzed the combined data from this experiment with the current Z-score formalism of DAT. 

For the 200 individual runs (i.e. 10 at each of the sequence lengths for each of the two participants) we 

found the best fit line to yield a slope = 4.3x10-8 ± 1.6x10-6 (t = 0.028, df = 8, P = 0.489) and an 

intercept = 1.16 ± 0.06 (t = 2.89, df = 8, p = 0.01). The slope interval easily encompasses zero and is 

• The original IDS analysis required the sequence lengths to be odd because of the logarithmic formalism. 

Approved For Release 2000/08/10 : CIA-RDP96-00791 R000200280002-5 9 



Aggr.loved ForfRelease 2000/08/10
1
: CIA-RDP96-00791 R000200280002-5 

-AppliCatiOns 0 -lYeclslon Augmenfal on Theory 14 May 1995 

not significantly different from zero, the intercept significance level (p = 0.01) is consistent with what 

Radin and May reported earlier. 

Since the pseudo-RNG seeds and bit streams were saved for each trial, it was possible to determine if 

the experiment sequences exactly matched the ones produced by the shift register algorithm; they did. 

Since their UNIX-based Sun Microsystems workstations were synchronized to the system clock, any 

momentary interruption of the clock would "crash" the machine, but no such crashes occurred. There­

fore, we believe no force-like interaction occurred. 

1b explore the timing aspects of the experiment Radin and May reran each run with pseudo-RNG seeds 

ranging from -5 to +5 clock ticks (i.e., 20 ms/tick) from the actual seed used in the run. We plot the 

resulting run effect sizes, which we computed from the experimental F-ratios (Rosenthal, 1991), for 

operator 531 in Figure 5. The estimated standard errors are the same for each seed shift and equal 

0.057. 
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Figure 5. Seed Timing for Operator 531 (298 Runs). 

Radin and May erroneously concluded that the significant differences between zero and adjacent seed 

positions was meaningful, and that the DAT ability was effective within 20 milliseconds. In fact, the 

situation shown in Figure 5 is expected. Differing from true random number generators in which slight 

changes in timing produce essentially the same sequence, pseudo-RNGs produced totally different se­

quences as a function of single digit seed changes. Thus, it would be surprising if the seed-shift display 

produced anything but a spike at seed shift zero. We will return to this point in our analysis of some of 

the published remarks on our theory. 

From this prospective test of DAT, we conclude that for pseudo-RNGs it is possible to select a proper 

entry point into a bit stream to produce significant deviations from mean chance expectation that are 

independent of sequence length. 

The Literature: Review and Comment 
We have identified six published articles that have commented upon the Intuitive Data Sorting theory, 

the earlier name for DAT. In this section, we chronologically summarize and comment on each report. 
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In his first of two criticisms of Intuitive Data Sorting (IDS), Walker (1987) suggested that his Monte 

Carlo simulations did not fit the predictions of the model. He generated a single deviant set of 100 bits 

(i.e., Z = 2.33, P = 0.01), and he inserted this same sequence as the first 100 bits of 400 otherwise ran­

domly generated sequences ranging from 100 to 106 bits in length. Walker's analysis of these sequences 

did not yield a least square's slope of -0.5 as predicted under the IDS formalism. Walker concluded that 

the model was incorrect. Walker's sequences, however, are not the type that are generated in AP ex­

periments or the type for which the IDS model is valid. 

May et al. (1985) were explicit about the character of the sequences that fit the IDS model. Specifically, 

Walker quotes May et aI. "Using psi-acquired information, individuals are able to select locally deviant 

subsequencesfrom a large random sequence." (Italics are used in the original May paper.) The very next 

sentence on page 249 of the reference says, "Such an ability, if mediated by precognition, would allow 

individuals (subjects or experimenters) to initiate a collection unit of continuous samples (this has been 

reported as a trial, a block, a run, etc.) in such a way as to optimize the final result. (Italics added here for 

emphasis.) Walker continued, "Indeed, the onJyway the subject can produce results that agree with the 

data is to wait for an extra-chance run that matches the experimental run length." In the final analysis, 

Walker actually supported our contention that individuals select deviant subsequences. Both from our 

text and the formalism in our 1985 paper, it is clear that what we meant by a "large random sequence," 

was large compared to the trial length, n. 

In his second criticism onDS in the same paper, Walker proposed that individuals would have to exhibit 

a physiologically impossible control over timing (e.g., when to press a button). As evidence apparently 

in favor of such an exquisite timing ability, he referred to the data presented by Radin and May (1986) 

that we have discussed above. (Please see Figure 5.) Walker suggested that Radin and May's result, 

therefore, supported his quantum mechanical observer theory. It is beyond the scope of this paper to 

critique Walker's quantum mechanical models, but we would hope they do not depend upon his analysis 

of Radin and May's results. The enhanced hitting at zero seed and the suppressed values ± one 20 ms 

clock tick that we show in Figure 5 is the expected result based upon the well-understood properties of 

pseudo-RNG's and does not represent the precision of the operator's reaction time. 

We must consider how it is possible with normal human reactions to obtain significant scores, which can 

only happen in 20 ms windows. In typical visual reaction time measurements, Woodworth and Schlos­

berg (1960) found a standard deviation of 30 ms. If we assume these human reactions are typical of 

those for AC performance and are normally distributed, we compute the maximum probability of being 

within a 20 ms window (i.e., centered about the mean) of 23.5%. For the worst case, the operators must 

"hit" significant seeds less often than 23.5% of the time. Radin and May do not report the number of 

significant runs, so we provide a worst-case estimate. Given that they quote a p-value of 0.005 for 500 

trials, we find that 39 trials must be independently significant. That is, the accumulated binomial proba­

bility is 0.005 for 39 hits in 500 trials with an event probability ofO. 05. This corresponds to a hitting rate 

(i.e., 39/500) of only 7.8%, a value well within the capability of human reaction times. We recognize that 

it is not a requirement to hit only on significant seeds; however, all other seeds leading to positive Z­

scores are less restrictive than the case we have presented. 
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The zero-center "spike" in Figure 5 misled Walker and others into thinking that exceptional timing was 

required to produce the observed deviations. As we have shown this is not the case, and, therefore, 

Walker's second criticism of the IDS theory is not valid. 

- Bierman -1988 

Bierman (1988) attempted to test the IDS model with a gifted subject. His experimental design ap­

peared to meet most ofthe criteria for a valid test ofthe model; however, Bierman found no evidence of 

an anomaly and stated that no conclusions could be drawn from his work. We encourage Bierman to 

continue with this design and to be specific with what he would expect to see if DAT were the correct 

mechanism compared to if it were not. 

Braud and Schlitz - 1989 

Braud and Schlitz (1989) conducted an electrodermal PK experiment specificany to test the IDS model. 

They argued that if the mechanism of the effect were informational, then allowing participants more 

opportunities to select locally deviant values of the dependent variable should yield stronger effects. In 

their experiment, 12 electrodermal sampling epochs were either initiated individually by a press of a 

button, or all 12 were determined as a result of the flrst button press. Braud and Schlitz hypothesized 

that under IDS, they would expect to see a larger overall effect in the former condition. They found that 

the single button press data yielded a significant result; whereas the multiple press data scored at chance 

(tsingleI31] = 214, P = 0.02, tmult;{31] = -0.53). They correctly concluded, therefore, that their data 

were more consistent with an influence mechanism than with an informational one. 

One implication of their result, which is supported by Braud's 1990 study (see below), is that perhaps 

there is something unique about biological systems that allow force-like interactions, whereas physical 

systems such as RNGs do not. 

Vassy-1990 

Vassy (1990) used a similar timing argument to refute the IDS model as did Walker (1987). Vassy gener­

ated pseudo-RNG single bits at a rate of one each 8.7 ms. He argued that if IDS were operating, that a 

subject would be more likely to identify bursts of ones rather than single ones given the time between 

consecutive bits. While he found signiflcant evidence for the primary task of "selecting" individual bits, 

he found no evidence that these hits were imbedded in excess clusters of ones. 

We compute that the maximum probability of a hit within an 8. 7 ms window centered on the mean of the 

normal reaction curve with a standard deviation of 30 ms (Woodworth and Schlosberg, 1960) is 11.5%. 

Vassy quotes an overall Z-score for 100 runs of 2.39. From this, we compute a mean Z of 0.239 for each 

run of 36 bits. Th obtain this result requires an excess hitting of O. 717 bits, which corresponds to an ex­

cess hitting rate of 2%. Given that 11.5% is the maximum one can expect with normal human reaction 

times, Vassy's results easily anow for individual bit selection, and, thus, cannot be used to reject the OAT 

model on the basis of timing. 
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Braud -1990 

In a cooperative effort with SRI International, Braud (1990) conducted a biological AP study with hu­

man red blood cells as the target system. The study was designed, in part, as a prospective test of OAT, so 

all conditions for a valid test were satisfied. Braud found that a significant number of individuals were 

independently able to "slow" the rate of hemolysis (i.e., the destruction of red blood cells in saline solu­

tion) in what he called the "protect" mode. Using data from the nine significant participants, Braud 

found support in favor of micro-AP over OAT. Figure 6 shows the results of our re-analysis of all of 

Braud's raw data using our more modem formalism of OAT. 
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Figure 6. OAT Analysis of Hemolysis Oata. 

The solid line indicates the theoretical mean chance expectation. The squares are the mean values of 

Z2 for the control data, and the error bars indicate the I-standard error for the 32 trials in the study. We 

notice that the control data with eight test tubes is significantly below chance (I = -2.79, df = 62, p = 
0.996). Compared to the chance line, the effort data is significant (I = 4.04, df= 31,p = 7.6x 10-5) for 

eight test tubes and nearly so for n = 2 (t = 2.06, df = 31, P = 0.051). The X at n = 8 indicates the 

calculated value of the mean of Z2 assuming that the effect size at n = 2 was entirely because of AP; 

similarly, the X atn = 2 indicates the calculated value assuming that the effect size, which was observed 

at n = 8, was totany due to AP. These AP predictions are not significantly different from the observed 

data (t = 0.156, p = 0.431, df = 62 and 1 = 0.906, p = 0.184, df = 62, at n = 2 and 8, respectively). 

Whereas DAT predicts no differences between the data at the end points for n, we find a significant 

difference (t = 2033, P = 0.023, df = 62). That is, to a statistical degree the data at n = 8, cannot be 

explained by selection alone. Thus, we concur with Braud's original conclusion; these results indicate a 

possible force-like relationship between mental intent and biological consequences. 

It is difficult to conclude from our analysis of a single study with only 32 trials that AP is part of nature; 

nonetheless, this result is very important. Thken with the results of Braud and Schlitz (1989) the evi­

dence of possible AP on biological systems is growing. May and Vilenskaya (1993) and Vilenskaya and 

May (1995) report that the preponderance of the research on anomalies in the Former Soviet Union is 
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the study of AP on biological systems. Their operators, as do ours, report their internal experiences 

suggestive of a force-like cOnnection between them and their biological targets. 

Dobyns - 1993 

- Dobyns (1993) presents a method for comparing what he calls the "influence" and "selection" models, 

corresponding to what we have been calling DAT and micro-AP. He uses data from 490 "tripolar sets" of 

experimental runs at PEAR. For each set, there was a high aim, a baseline and a low aim condition. 

The three values produced were then sorted into which one was actually highest, in the middle, and 

lowest for each set. The data were then summarized into a 3 X 3 matrix, where the rows represented the 

three intentions, and the columns represented the actual ordering. If every attempt had been success­

ful, the diagonal of the matrix would consist of the number of tripolar sets, namely 490. We present the 

data portion of Dobyns' Thble from page 264 of the reference as our Thble 2: 

Thble 2. 

Scoring Data From Dobyns (1993) 

Intention 
Actual 

High Middle Low Thtal 

High 180 167 143 490 

Baseline 159 156 175 490 

Low 151 167 172 490 

Thtal 490 490 490 

Dobyns computes an aggregate likelihood ratio of his predictions for the DAT and micro-AP models 

and concludes in favor the the influence model with a ratio of 28.9 to one. 

However, there are serious problems with the methods used in Dobyns' paper. In this paper we outline 

only two of the difficulties. Th fully explain them would require a level of technical discussion not suit­

able for a short summary such as this. 

One problem is in the calculation of the likelihood ratio function using his Equation 6, which we repro­

duce from page 265 of the reference: 

B(P/q) = P'(P;P; = fPI]'" fP2]"2 fP3] "3 , 
q'(q;q; Lql Lq2 Lq3 

where P and q are the predicted rank frequencies for each aim under the influence and selection models, 

respectively, and the n are the observed frequencies for each aim. We agree that this relationship cor­

rectly gives the likelihood ratio for comparing the two models for one row ofThble 2. However, immedi­

ately following that equation, Dobyns writes, "The aggregate likelihood of the hypothesis over all three 

intentions may be calculated by repeating the individual likelihood calculation for each intention, and 

the total likelihood will simply be the product of factors such as (6) above for each of the three inten­

tions." 
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That statement is incorrect. A combined likelihood is found, by multiplying the individual likelihoods 

only if the random variables are independent of each other (DeGroot, 1986, p. 145). Clearly, the rows 

of the table are not independent. In fact, if you know any two of the rows, the third is determined exact­

ly. The correct likelihood ratio needs to build that dependence into the formula.· 

A second technical problem with the conclusion that the data support the influence model is that the 

method itself strongly supports the influence model. As noted by Dobyns, "In fact, applying the test to 

data sets that, by construction, contain no effect, yields strong odds (ranging, in a modest Monte Carlo 

database, from 8.5 to over 1(0) in favor of the influence model (page 268)." The actual data in his paper 

yielded odds of 28.9 to one in favor of the influence model; however, this value is well within the re­

ported limits from his "influence-less" Monte Carlo data. 

Under DAT it is possible that AC-mediated selection might occur at the protocol level, but the primary 

way is through timing-initiating a run to capitalize upon a locally deviant subsequence. How this might 

work in dynamic RNG devices is clear; wait until such a deviant sequence is in your immediate future 

and initiate the run in time to capture it. With "static" devices, such as PEAR's random mechanical 

cascade device, how timing enters in is less obvious. Under closer inspection, however, even with this 

device there is a statistical variation among unattended control runs. That is, there is never a series of 

control runs that give exactly the same mean. Physical effects, such as Browian motion, temperature 

gradients, etc., can account for the observed variance in the absence of human operators. Thus, when a 

run is initiated to capture favorable local "environmental" factors, even for "static" devices, remains 

the operative issue with regard to DAT. Dobyns does not consider this case at all in his analysis. If DAT 

enters in at the protocol selection, as it probably does, it is likely to be a second-order contribution be­

cause of the limited possibilities from which to select (Le., six in the tripolar case). 

Finally, a major problem with Dobyns' conclusion, which was pointed out when he first presented this 

paper at a conference (May, 1990), is that the likelihood ratio supports the influence model even for 

their pseudo-RNG data. Dobyns dismisses this fmding (page 268) all too easily given the preponder­

ance of evidence that suggest that no influence occurs during pseudo-RNG studies (Radin and May, 

1986). 

Aside from the technical flaws in Dobyns' likelihood ratio arguments, and even ignoring the problem 

with the pseudo-RNG analysis, we reject his conclusions simply because they hold in favor of influence 

even in Monte Carlo-constructed unperturbed data. 

Circumstantial Evidence Against an AP Model for RNG Data 
Experiments with hardware RNG devices are not new. In fact, the title of Schmidt's very first paper on 

the topic (1969) portended our conclusion, "Precognition of a Quantum Process." Schmidt lists PK as a 

third option after two possible sources for precognition, and remarks, "The experiments done so far do 

not permit a distinction (ifsuch a distinction is at all meaningful) between the three possibilities." From 

1969 onward, the RNG research has been strongly oriented toward a PK model. The term micro-PK, 

itself, embeds the force concept further into the lexicon of RNG descriptions . 

.. Dobyns agrees on this point-private communication. 
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In this section, we examine a number ofRNG experimental results that provide circumstantial evidence 

against the AP hypothesis. -Any single piece of evidence couid be easily dismissed; however, taken to­

gether, they demonstrate a substantial case against AP. 

-- Internal Complexity of RNG Devices and Source Independence 

Schmidt (1974) conducted the first experiment to explore potential dependencies upon the internal 

workings of his generators. Since by definition AP implies a force or influence, it seemed reasonable to 

expect that an influence should depend upon the details of the target system. In this study, one genera­

tor produced individual binary bits, which were derived from the p-decay of 90Sr, while the other 

"binary" output was a majority vote from 100 bits, each of which were derived from a fast electronic 

diode. Schmidt reports individually significant effects with both generators, yet does not observe a sig­

nificant difference between the generators. 

This particular study is interesting, quite aside from the timing and majority vote issues; the binary 

streams were derived from fundamentally different physical sources. Radioactive j3-decay is governed 

by the weak nuclear force, and electronic devices (e.g., noise diodes) are governed by the electromag­

netic force. Schematically speaking, the electromagnetic force is approximately 1,000 times as strong as 

the weak nuclear force, and modern high-energy physics has shown them to be fundamentally different 

after about 10-10 seconds after the big bang (Raby, 1985). Thus, a putative AP-force would have to 

interact equally with these two forces; and since there is no mechanism known that will cause the elec­

tromagnetic and weak forces to interact with each other, it is unlikely that AP will turn out to be the first 

coupling mechanism. The lack of difference between p-decay and noise diode generators was con­

firmed years later by May et al. (1980). 

We have already commented upon one aspect of the timing issue with regard to Radin and May's (1986) 

experiment and the papers by Walker (1987) and Vassy (1990). May (1975) introduced a scheme to 

remove any first-order biases in binary generators that also is relevant to the timing issue. The output of 

his generator was a match or anti-match between the random bit stream and a target bit. One mode of 

the operation of the device, which May describes, included an oscillating target bit-one oscillation per 

bit at approximately 1 MHz rate.· May and Honorton (1975) and Honorton and May (1975) reported 

significant effects with the RNG operating in this mode. Thus, significant effects can be seen even with 

devices that operate in the microsecond time domain, which is three orders of magnitude faster than 

any known physiological process. 

Effects with Pseudorandom Number Generators 

Pseudorandom number generators are, by definition, those that depend upon an algorithm, which is 

usually implemented on a computer. Radin (1985) analyzed all the pseudo-RNGs commonly in use and 

found that they require a starting value (i.e., a seed), which is often derived from the computer's system 

clock. As we noted above, Radin and May (1986) showed that the bit stream, which proved to be "suc­

cessful" in a pseudo-RNG study, was bit-for-bit identical with the stream, which was generated later, 

but with the same seed. With that generator, at least, there was no change from the expected bit stream. 

• Later, this technique was adopted by Jahn (1982) for use in the RNG devices at PEAR. 
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Perhaps it is possible that the seed generator (i.e., system cloc:k) was subjected to some AP interaction. 

- We propose two arguments against this hypothesis: 

(1) Even one cycle interruption of a computers' system clock will usually invoke a system crash; an 
event not often reported in pseudo-RNG experiments. 

-- (2) Computers use crystal oscillators as the basis for their internal clocks. Crystal manufacturers usual­
ly quote errors in the stated oscillation frequency of the order of 0.001 percent. That translates to 
500 cycles for a 50 MHz crystal, or to lOlls in time. Assuming that the quoted error is a 1-0 estimate, 
and that a putative AP interaction acts at within the ± 2-0 domain, then shifting the clock by this 
amount might account for only one seed shift in Radin and May's experiment. By Monte Carlo 
methods, we determined that, given a random entry into seed-space, the average number of ticks to 
reach a "significant" seed is 10; therefore, even if AP could shift the oscillators by 2-0, it cannot 
account for the observed data. 

Since computers in pseudo-RNG experiments are not reported as "crashing" often, it is safe to assume 

that pseudo-RNG results are only due to AC. In addition, since the results of pseudo-RNG studies are 

statistically inseparable from those reported with true RNGs, it is also reasonable to assume that the 

mechanisms are similarly AC-based. 

Precognitive AC 

Using the tools of modem meta-analysis, Honorton reviewed the precognition card-guessing database 

(Honorton and Ferarri, 1989). This analysis included 309 separate studies reported by 62 investigators. 

Nearly two million individual trials were contributed by more than 50,000 subjects. The combined ef­

fect size was E = O.020±O.002, which corresponds to an overall combined effect of 11.40. Tho impor­

tant results emerge from Honorton's analysis. First, it is often stated by critics that the best results are 

from studies with the least methodological controls. 1b check this hypothesis, Honorton devised an 

eight-point quality measure (e.g., automated recording of data, proper randomization techniques) and 

scored each study with regard to these measures. There was no significant correlation between study 

quality and study score. Second, if researchers improved their experiments over time, one would expect 

a significant correlation of study quality with date of publication. Honorton found r = 0.246, df = 307, p 

= 2XlO-7• In brief, Honorton concludes that a statistical anomaly exists in this data that cannot be 

explained by poor study quality or a large variety of other hypotheses including the file drawer; there­

fore, a potential mechanism underlying OAT has been verified. 

SRI International's RNG Experiment 

May, Humphrey, and Hubbard (1980) conducted an extensive RNG study at SRI International in 1979. 

They applied state-of-the-art engineering and methodology to construct two true RNGs, one based on 

the ~-decay of 137Pm and the other based on an MD-20 noise diode from Thxas Instruments. It is be­

yond the scope of this paper to describe, in detail, the intricacies of this experiment; however, we will 

discuss those aspects that are pertinent to this discussion. 

Technical Details 

Each of the two sources were battery operated and optically coupled to a Digital Equipment Corpora­

tion LSI 11/23 computer. Fail-safe circuitry would disable the sources if critical physical parameters 

(e.g., battery voltages and currents, temperature) exceed preset ranges. Both sources were subjected to 
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environmental testing which included extreme temperature _cycles, vibration tests, E&M and nuclear 

gamma and neutron radiation tests. Both sources behaved as expected, and the critical parameters, 

such as temperature, were monitored and their data stored along with the experimental data. 

A source was sampled at 1 KHz rate. After eight milliseconds, the resulting byte was sent to the comput­

erwhile the next byte was being obtained. In this way, a continuous stream of 1 ms data was presented to 

the computer. May et al. had specified, in advance, that bit number 4 was the designated target bit. 

Thus each byte provided 3 ms of bits prior to the target and 4 ms of bits after the target bit. 

A trial was defined as a definitive outcome from a sequential analysis of bit four from each byte. In 

exchange for not specifying the number of samples in advance, sequential analysis requires that the 

1YPe I and lYPe II errors, and the chance and extra-chance hitting rate be specified in advance. In May 

et al.'s two-tailed analysis, a = ~ = 0.05 and the chance and extra-chance hitting rate was 0.50 and 0.52, 

respectively. The expected number of samples to reach a definitive decision was approximately 3,000. 

The outcome from a single trial could be in favor of a hitting rate of 0.52,0.48, or at chance of 0.50, with 

the usual risk of error in accordance with the specified 1YPe I and lYPe II errors. 

Each of seven operators participated in 100 Jrials of this type. For an operator's data to reach indepen­

dently statistical significance, the operator had to produce 16 successes in 100 trials, where a success was 

defined as extra-chance hitting (i.e., the exact binomial probability of 16 successes for 100 trials with an 

event probability of 0.10 is 0.04 where one less success is not significant). '!Wo operators produced 16 

and 17 successful trials, respectively. 

Temporal Analysis 

We analyzed the 33 trials from the two independently significant operators from May et al.'s experi­

ment. Each of the 33 trials consisted of approximately 3,000 bits of data with - 3 bits and +4 bits of 1 

ms/bit temporal history surrounding the target bit. We argue that if the significance observed in the 

target bits was because of AP, we would expect a large correlation with the target bit's immediate neigh­

bors, which are only ± 1 ms away. As far as we know, there is no known physiological process that can be 

cognitively, or in any other way, manipulated within a millisecond. We might even expect a 100% cor­

relation under the complete AP model. 

We computed the linear correlation coefficients between bits 3 and 4, 4 and 5, and 3 and S. For binary 

data: 

NtjJ2 - X2{df = 1), 

where tjJ is the linear correlation coefficient and N is the number of samples. Since we examined three 

different correlations for 33 trials, we computed 99 different values ofNtjJ2. Four of them producedX2s 

that were significant-well within chance expectation. The complete distribution is shown in Figure 7. 

We see that there is excellent agreement of the 99 correlations with theX2 distribution for one degree of 

freedom, which is shown as a smooth curve. 

We conclude, therefore, that there was no evidence beyond chance to suggest that the target bit neigh­

bors were affected even when the target bit analysis produced significant evidence for an anomaly. So, 

knowing the physiological limitations of the human systems, we further concluded that the observed 

effects could not have arisen due to a human-mediated force (i.e., AP). 
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Figure 7. Observed and Theoretical Correlation Distributions. 

Mathematical Model of the Noise Diode 

Because of the unique construction parameters of Texas Instrument's MD-20 noise diode, May et al. 

were able to construct a quantum mechanical model of the detailed workings of the device. This model 

contained all known properties of the material and it's construction parameters. For example, the band 

gap energy in Si, the effective mass of an electron or hole in the semiconductor, and the impurity con­

centration were among the parameters for the model. The model was successful at calculating the 

diode's known and measured behavior as a function of temperature. May et al. were able to simulate 

their RNG experiment down to the quantum mechanical details of the noise source. They hoped that 

by adjusting the model's parameters so that the computed output agreed with the experimental one, 

that they could gain insight as to where the influence "entered" the device. 

May et al. were not able to find a set of model parameters that mimicked their RNG data. For example, 

changing the band gap energy for short periods of time; increasing or reducing the electron's effect 

mass; or redistributing or changing the impurity content produced no unexpected changes in the device 

output. The only device behavior that could be effected was its known function of temperature. 

Because of the construction details of the physical RNG, this result could have been anticipated. The 

changes that could be simulated in the model were aU in the microsecond domain because of the details 

of the device. Both with the RNG and in its model, the diode's multi-MHz output was rtltered by a 

1oo-KHz wide bandwidth filter. Thus, any microsecond changes would not pass through the filter. In 

short, because of this filtering, the RNG was particularly insensitive to potential changes of the physical 

parameters of the diode. 

Yet solid statistical evidence for an anomaly was seen by May et al. Since the diode device was shown 

mathematically and empirically to be insensitive to environmental and physical changes, these results 

must have been as a result of AC rather than AP. In fact, this observation coupled with the bit timing 

argument, which we have described above, led May et al. to question force-like models in RNG studies 

in general. 
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We have identified six circumstantial arguments that, when taken together, provide increasingly diffi­

cult requirements that must be met by a putative AP force. In summary, the RNG database demon­

strates that: 

(1) Data are independent of internal complexity of the hardware RNG device. 

(2) Data are independent of the physical mechanism producing the randomness (i.e., weak nuclear or 
electromagnetic). 

(3) Effects with pseudorandom generators are statistically equivalent to those observed with true 
hardware generators. . 

(4) Reasonable AP models of mechanism do not fit the data. 

(S) In one study, bits which are ± 1 ms from a "perturbed" target bit are themselves unperturbed. 

(6) A detailed model of a diode noise source, which includes all known physics of the device, could not 
simulate the observed data streams. 

In addition, AC, which is a mechanism to describe the data, has been confirmed in non-RNG experi­

ments. We conclude, therefore, an AP force that is consistent with the database must 

• Be equally coupled to the electromagnetic and weak nuclear forces. 

• Be mentally mediated in times shorter than one millisecond. 

• Follow a l/ .. ./i law. 

For these to be true, an AP force would be at odds with an extensive amount of verified physics and 

common behavioral observables. We are not saying, therefore, that it cannot exist; rather, we are sug­

gesting that instead of having to force ourselves to invent a whole new science, we should look for ways 

in which AP might fit into the present world view. In addition we should invent information-based and 

testable alternate mechanisms for the experimental observables. 

Discussion and Conclusions 
Our recent results in the study of anomalous cognition (May, Spottiswoode, and James, 1994) suggest 

the the quality of AC is proportional to the change in Shannon entropy. Following Vassy (1990), we 

compute the change in Shannon entropy for an extra-chance, binary sequence of length n. The total 

change of entropy is given by: 

L1S = So - S, 

where for an unbiased binary sequence of length n, So = n, and S is given by: 

S = - np1log2P1 - n(l - P1)/og2(1 - P1). 

LetPl = 0.5 (1 + e) and assume that E, the effect size, is small compared to one (i.e., typical RNG effect 

sizes are of the order of 3 X 10-4). Using the approximation: 

In(l + e) = e - ~, 

we find that S is given by: 
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L1S = So - S = n

ZlnZ
. 
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Since our analysis of the historical RNG database shows that the effect size is proportional to 1 / vii, 
the total change of Shannon entropy becomes a constant that is independent of the sequence length: 

L1S = constant. 

We have seen in our other AC experiments (May, Spottiswoode, and James, 1994) that the quality of 

the data is proportional to the change of the target entropy. In RNG experiments the quality of the data 

is equivalent to the excess hitting, which according to DAT is mediated by AC and should be indepen­

dent of the sequence length. We have shown above that the quality of RNG data depends upon the 

change of target entropy and is independent of the sequence length. Therefore we suggest that the 

change of target entropy may account for successful AC and RNG experiments. 

Braud's study of AP on red blood cells and Braud and Schlitz's study on electrodermal effects imply that 

there is something unique about living systems. Before we would be willing to declare that AP is a valid 

mechanism for biological experiments, more than two, albeit well designed and executed, studies are 

needed. 

When DAT is applied to the RNG database, a simple force-like perturbational model fails, by many 

orders of magnitude, as a viable candidate for the mechanism. In addition, when viewed along with the 

collective circumstantial arguments against a force-like explanation, it is clear that another model is 

required. Any new model must explain why quadrupling the number of bits in the sequence length fails 

to produce a Z-score twice as large. 

Given that one possible information mechanism (i.e., precognitive AC) can, and has been, indepen­

dently confirmed in the laboratory, and given the weight of the empirical, yet circumstantial, arguments 

taken together against AP, we conclude that the anomalous results from the RNG studies arise not be­

cause of a mentally mediated force, but rather because of a human ability to be a mental opportunist by 

making AC-mediated decisions to capitalize on the locally deviant circumstances. 

Generally, we suggest that future studies be designed in such a way that the criteria, as outlined in this 

paper and in May, Utts, Spottiswoode (1994), conform to a valid DAT analysis. Our discipline has 

evolved to the point where we can no longer be satisfied with yet one more piece of evidence of a statisti­

cal anomaly. We must identiiY the sources of variance as suggested by May, Spottiswoode, and James 

(1994); limit them as much as possible; and apply models, such as DAT, which can begin to shed light on 

the physical, physiological, and psychological mechanisms of anomalous mental phenomena. 
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